欧美精品手机一级在线播放,中文字幕在线欧美日韩,欧美精品中文字幕亚洲专区,国产免费观看网站

    <mark id="hrvb1"><strong id="hrvb1"></strong></mark>
  • <td id="hrvb1"></td>

    北師大《勾股定理》教案

    時間:2021-04-15 14:53:45 教案 我要投稿

    北師大《勾股定理》教案(通用5篇)

      作為一名教師,通常會被要求編寫教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學、恰當?shù)慕虒W方法。那么問題來了,教案應(yīng)該怎么寫?下面是小編為大家整理的北師大《勾股定理》教案(通用5篇),僅供參考,大家一起來看看吧。

    北師大《勾股定理》教案(通用5篇)

      北師大《勾股定理》教案1

      一、教材分析:

     。ㄒ唬┙滩牡牡匚慌c作用

      從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應(yīng)用。

      從學生認知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。

      根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中情感態(tài)度方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。

     。ǘ┲攸c與難點

      為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。

      二、教學與學法分析

      教學方法葉圣陶說過"教師之為教,不在全盤授予,而在相機誘導。"因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設(shè)計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

      學法指導為把學習的主動權(quán)還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

      三、教學過程

      我國數(shù)學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設(shè)計為以下五個環(huán)節(jié)。

      首先,情境導入古韻今風

      給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。讓學生觀察并思考三個正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著怎么樣數(shù)學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。

      第二步追溯歷史解密真相

      勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學知識的循序漸進、螺旋上升的原則,我設(shè)計如下三個活動。

      從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學生會想到用"數(shù)格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應(yīng)引導學生利用"割"和"補"的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。

      突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了"從特殊到一般"的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產(chǎn)生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示"割"的方法,"補"的方法,有的學生可能會發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應(yīng)給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。

      使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當為直角三角形時,改變?nèi)呴L度三邊關(guān)系不變,當∠α為銳角或鈍角時,三邊關(guān)系就改變了,進而強調(diào)了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

      以上三個環(huán)節(jié)層層深入步步引導,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。

      感性認識未必是正確的,推理驗證證實我們的猜想。

      第三步推陳出新借古鼎新

      教材中直接給出"趙爽弦圖"的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應(yīng)給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出"學生是學習的主體,教師是組織者、引導者與合作者"這一教學理念。學生會發(fā)現(xiàn)兩種證明方案。

      方案1為趙爽弦圖,學生講解論證過程,再現(xiàn)古代數(shù)學家的探索方法。方案2為學生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學的嚴謹性。對比"古"、"今"兩種證法,讓學生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。

      教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數(shù)學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數(shù)學的精巧、優(yōu)美。

      第四步取其精華古為今用

      我按照"理解—掌握—運用"的梯度設(shè)計了如下三組習題。

     。1)對應(yīng)難點,鞏固所學。

     。2)考查重點,深化新知。

     。3)解決問題,感受應(yīng)用。

      第五步溫故反思任務(wù)后延

      在課堂接近尾聲時,我鼓勵學生從"四基"的要求對本節(jié)課進行小結(jié)。進而總結(jié)出一個定理、二個方案、三種思想、四種經(jīng)驗。

      然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學生的理念。

      北師大《勾股定理》教案2

      一、教材分析:

      勾股定理是學生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。

      教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。

      據(jù)此,制定教學目標如下:

      1、理解并掌握勾股定理及其證明。

      2、能夠靈活地運用勾股定理及其計算。

      3、培養(yǎng)學生觀察、比較、分析、推理的能力。

      4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

      二、教學重點:

      勾股定理的證明和應(yīng)用。

      三、教學難點:

      勾股定理的證明。

      四、教法和學法:

      教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:

      以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

      切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

      通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。

      五、教學程序

      :本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設(shè)計如下:

     。ㄒ唬﹦(chuàng)設(shè)情境以古引新

      1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。

      2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學生進入樂學狀態(tài)。

      3、板書課題,出示學習目標。

      (二)初步感知理解教材

      教師指導學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。

     。ㄈ┵|(zhì)疑解難、討論歸納:

      1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。

      2、教師引導學生按照要求進行拼圖,觀察并分析;

     。1)這兩個圖形有什么特點?

     。2)你能寫出這兩個圖形的面積嗎?

     。3)如何運用勾股定理?是否還有其他形式?

      這時教師組織學生分組討論,調(diào)動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

      (四)鞏固練習強化提高

      1、出示練習,學生分組解答,并由學生總結(jié)解題規(guī)律。課堂教學中動靜結(jié)合,以免引起學生的疲勞。

      2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

      (五)歸納總結(jié)練習反饋

      引導學生對知識要點進行總結(jié),梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。

      本課意在創(chuàng)設(shè)愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助多媒體提高課堂教學效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。

      北師大《勾股定理》教案3

      一、教材分析

     。ㄒ唬┙滩牡匚

      這節(jié)課是九年制義務(wù)教育初級中學教材北師大版八年級第一章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。

     。ǘ┙虒W目標

      知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

      過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

      情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。

     。ㄈ┙虒W重點:

      經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

      教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

      突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

      二、教法與學法分析:

      學情分析:八年級學生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

      教法分析:結(jié)合八年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式,選擇引導探索法。把教學過程轉(zhuǎn)化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

      學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

      三、教學過程設(shè)計

      1、創(chuàng)設(shè)情境,提出問題

      2、實驗操作,模型構(gòu)建

      3、回歸生活,應(yīng)用新知

      4、知識拓展,鞏固深化5。感悟收獲,布置作業(yè)

     。ㄒ唬﹦(chuàng)設(shè)情境提出問題

      樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

      設(shè)計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié)。

      實驗操作模型構(gòu)建

      1、等腰直角三角形(數(shù)格子)

      2、一般直角三角形(割補)

      問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

      設(shè)計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。

      問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補法是本節(jié)的難點,組織學生合作交流)

      設(shè)計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎(chǔ),讓學生的分析問題解決問題的能力在無形中得到提高。

      通過以上實驗歸納總結(jié)勾股定理。

      設(shè)計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊——一般的認知規(guī)律。

      回歸生活應(yīng)用新知

      讓學生解決開頭情景中的問題,前呼后應(yīng),增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心。

      四、知識拓展鞏固深化

      基礎(chǔ)題,情境題,探索題。

      設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關(guān)注學生的個性發(fā)展。知識的運用得到升華。

      基礎(chǔ)題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?

      設(shè)計意圖:這道題立足于雙基.通過學生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

      情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

      設(shè)計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。

      探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

      設(shè)計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。

      五、感悟收獲布置作業(yè):

      這節(jié)課你的收獲是什么?

      1、課本習題。

      2、搜集有關(guān)勾股定理證明的資料。

      板書設(shè)計探索勾股定理

      如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

      李景萍《探索勾股定理》第一課時說課稿

      設(shè)計說明:

      1、探索定理采用面積法,為學生創(chuàng)設(shè)一個和諧、寬松的情境,讓學生體會數(shù)形結(jié)合及從特殊到一般的思想方法.

      2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平。

      北師大《勾股定理》教案4

      教材分析:

      如果說數(shù)學思想是解決數(shù)學問題的一首經(jīng)典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數(shù)學建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學習了二次根式之后的教學,是在學生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行的后繼學習,是中學數(shù)學幾個重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應(yīng)用。

      勾股定理的發(fā)現(xiàn)、驗證和應(yīng)用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。

      新課標下的數(shù)學教學不僅是知識的教學,更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學中的地位和作用,結(jié)合初二學生不愛表現(xiàn)、好靜不好動的特點,我確定本節(jié)教學目標如下:

      1、探索并利用拼圖證明勾股定理。

      2、利用勾股定理解決簡單的數(shù)學問題。

      3、感受數(shù)學文化,體會解決問題方法的多樣性和數(shù)形結(jié)合的思想。

      本著課標的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學重點、難點、關(guān)鍵如下:

      勾股定理的證明和簡單應(yīng)用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。

      為了講清重點、突破難點、抓住關(guān)鍵,使學生達到預(yù)定目標,我對教法和學法分析如下:

      教法分析:

      新課程標準強調(diào)要從學生已有的經(jīng)驗出發(fā),最大限度的激發(fā)學生學習積極性,新課程下的數(shù)學教師更應(yīng)是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預(yù)習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數(shù)學的過程,激發(fā)學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發(fā)現(xiàn)法、討論法等多種教學方法相結(jié)合的形式,讓學生充分展示預(yù)習成果,體驗成功的快樂,為終身學習和發(fā)展打下堅實的基礎(chǔ)。為了增大課堂容量、給學生創(chuàng)設(shè)高效的數(shù)學課堂,給學生提供足夠從事數(shù)學活動的時間,以導學案的形式、運用多媒體輔助教學。

      學法分析

      學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養(yǎng)學生良好的學習品質(zhì)和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養(yǎng)學生的邏輯思維能力和語言表達能力。

      為了充分調(diào)動學生的學習積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學課堂,我以導學案的方式循序見進的設(shè)計教學流程。

      以學生必讀課本48—52頁,選讀課本55、56頁的課前預(yù)習為前提,共分四個環(huán)節(jié)來進行教學

      1、勾股定理的探究:讓學生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學思想引導好學生課前預(yù)習,再以檢查預(yù)習成果的形式為新知的探究作好鋪墊。

      2、勾股定理的證明:以學生拼圖展示、講解預(yù)習成果的形式完成對定理的證明。

      3、勾股定理的應(yīng)用:以課堂練習、學生個性補充和老師適當?shù)膫性化追加的形式實現(xiàn)對定理的靈活應(yīng)用。

      4、學后反思:以學生小結(jié)的形式引導學生從知識、情感兩方面實現(xiàn)對本節(jié)內(nèi)容的鞏固與升華。

      說創(chuàng)新點:

      為了給學生營造一個和諧、民主、平等而高效的數(shù)學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當?shù)钠瘘c和方法,充分發(fā)揮學生的主體地位與教師主導作用相統(tǒng)一的原則。教學中注重學生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預(yù)習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養(yǎng)學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。

      教學中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學課堂充滿親切、民主的氣氛,例如整節(jié)課我以學生的操作、展示、講解、個性補充為主,拉近了數(shù)學與學生的距離,激發(fā)了學生的學習興趣;為了使不同的學生得到不同的發(fā)展,人人學有價值的數(shù)學,在教學中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現(xiàn)數(shù)學的變化美。

      以學生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學生創(chuàng)新思維,使不同的人在數(shù)學上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨特教學風格的作文式數(shù)學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數(shù)學文化的薰陶和數(shù)學思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時由“勾股樹”到“智慧樹”的希望寄語。

      北師大《勾股定理》教案5

      一、教材分析

     。ㄒ唬┙滩乃幍牡匚

      這節(jié)課是九年制義務(wù)教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。

      (二)根據(jù)課程標準,本課的.教學目標是:

      1、能說出勾股定理的內(nèi)容。

      2、會初步運用勾股定理進行簡單的計算和實際運用。

      3、在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。

      4、通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。

     。ㄈ┍菊n的教學重點:探索勾股定理

      本課的教學難點:以直角三角形為邊的正方形面積的計算。

      二、教法與學法分析:

      教法分析:針對初二年級學生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。

      學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。

      三、教學過程設(shè)計

     。ㄒ唬┨岢鰡栴}:

      首先創(chuàng)設(shè)這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,教師引導學生將實際問題轉(zhuǎn)化成數(shù)學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學化”的過程。

     。ǘ⿲嶒灢僮鳎

      1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。

      2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預(yù)先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。

      3、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學生體會到結(jié)論更具有一般性。

     。ㄈw納驗證:

      1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學生用數(shù)學語言概括出一般的結(jié)論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數(shù)學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結(jié)論要好的多。

      2、驗證為了讓學生確信結(jié)論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結(jié)論的正確性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學語言是學習數(shù)學學習的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。

     。ㄋ模﹩栴}解決:

      讓學生解決開頭的實際問題,前后呼應(yīng),學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學是與實際生活緊密相連的。

     。ㄎ澹┱n堂小結(jié):

      主要通過學生回憶本節(jié)課所學內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學思想方法、獲取新知的途徑方面先進行小結(jié),后由教師總結(jié)。

     。┎贾米鳂I(yè):

      課本P6習題1.11,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯(lián)系。另外,補充一道開放題。

      四、設(shè)計說明

      1、本節(jié)課是公式課,根據(jù)學生的知識結(jié)構(gòu),我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。

      2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質(zhì)的形成有重要作用,對學生的終身發(fā)展也有一定的作用。

      3、關(guān)于練習的設(shè)計,除兩個實際問題和課本習題以外,我準備設(shè)計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學生盡量地找出線段之間的關(guān)系。

      4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學生學知識,用知識的意識是有很大的促進的。

    【北師大《勾股定理》教案(通用5篇)】相關(guān)文章:

    勾股定理說課稿15篇02-04

    《探索勾股定理》的說課稿11-30

    勾股定理說課稿范文7篇02-04

    勾股定理的逆定理說課稿12-04

    中學北師大版英語的定位教案模板02-23

    北師大版必修三語文《尋夢者》教案02-16

    勾股定理的逆定理說課稿4篇12-04

    北師大《家》教學設(shè)計(通用5篇)12-23

    北師大版初二上冊《靜默草原》教案02-11

    北師大版七年級歷史教案02-28