欧美精品手机一级在线播放,中文字幕在线欧美日韩,欧美精品中文字幕亚洲专区,国产免费观看网站

    <mark id="hrvb1"><strong id="hrvb1"></strong></mark>
  • <td id="hrvb1"></td>

    高中數(shù)學(xué)概念教學(xué)設(shè)計(jì)

    時(shí)間:2022-07-14 19:10:26 教學(xué)設(shè)計(jì) 我要投稿

    高中數(shù)學(xué)概念教學(xué)設(shè)計(jì)

      作為一名為他人授業(yè)解惑的教育工作者,可能需要進(jìn)行教學(xué)設(shè)計(jì)編寫工作,教學(xué)設(shè)計(jì)把教學(xué)各要素看成一個(gè)系統(tǒng),分析教學(xué)問題和需求,確立解決的程序綱要,使教學(xué)效果最優(yōu)化。我們應(yīng)該怎么寫教學(xué)設(shè)計(jì)呢?以下是小編為大家整理的高中數(shù)學(xué)概念教學(xué)設(shè)計(jì),希望能夠幫助到大家。

    高中數(shù)學(xué)概念教學(xué)設(shè)計(jì)

      教學(xué)目的:

      (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

      (2)使學(xué)生初步了解“屬于”關(guān)系的意義

      (3)使學(xué)生初步了解有限集、無限集、空集的意義

      教學(xué)重點(diǎn):

      集合的基本概念及表示方法

      教學(xué)難點(diǎn):

      運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合

      授課類型:

      新授課

      課時(shí)安排:

      1課時(shí)

      教具:

      多媒體、實(shí)物投影儀

      內(nèi)容分析:

      集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問題、研究問題不可缺少的工具這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)。

      把集合的初步知識(shí)與簡易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。

      本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的'元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

      這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念。

      集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí)教科書給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集”這句話,只是對(duì)集合概念的描述性說明。

      教學(xué)過程:

      一、復(fù)習(xí)引入:

      1.簡介數(shù)集的發(fā)展,復(fù)習(xí)公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

      2.教材中的章頭引言;

      3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);

      4.“物以類聚”,“人以群分”;

      5.教材中例子(P4)

      二、講解新課:

      閱讀教材第一部分,問題如下:

      (1)有那些概念?是如何定義的?

      (2)有那些符號(hào)?是如何表示的?

      (3)集合中元素的特性是什么?

      (一)集合的有關(guān)概念:

      由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的我們說,每一組對(duì)象的全體形成一個(gè)集合,或者說,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集.集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素.

      定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.

      1、集合的概念

      (1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡稱集)

      (2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素

      2、常用數(shù)集及記法

      (1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合記作N,

      (2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集記作N或N+

      (3)整數(shù)集:全體整數(shù)的集合記作Z,

      (4)有理數(shù)集:全體有理數(shù)的集合記作Q,

      (5)實(shí)數(shù)集:全體實(shí)數(shù)的集合記作R

      注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

      (2)非負(fù)整數(shù)集內(nèi)排除0的集記作N或N+Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z

      3、元素對(duì)于集合的隸屬關(guān)系

      (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

      (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

      4、集合中元素的特性

      (1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

      (2)互異性:集合中的元素沒有重復(fù)

      (3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗?

      5、(1)集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……

      元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

      (2)“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫

      三、練習(xí)題:

      1、教材P5練習(xí)1、2

      2、下列各組對(duì)象能確定一個(gè)集合嗎?

      (1)所有很大的實(shí)數(shù)(不確定)

      (2)好心的人(不確定)

      (3)1,2,2,3,4,5.(有重復(fù))

      3、設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是-2,0,2

      4、由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含(A)

      (A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素

      5、設(shè)集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數(shù),求證:

      (1)當(dāng)x∈N時(shí),x∈G;

      (2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G

      證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

      則x=x+0=a+b∈G,即x∈G

      證明(2):∵x∈G,y∈G,

      ∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

      ∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

      ∵a∈Z,b∈Z,c∈Z,d∈Z

      ∴(a+c)∈Z,(b+d)∈Z

      ∴x+y=(a+c)+(b+d)∈G,

      又∵=

      且不一定都是整數(shù),

      ∴=不一定屬于集合G

      四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

      1.集合的有關(guān)概念:(集合、元素、屬于、不屬于)

      2.集合元素的性質(zhì):確定性,互異性,無序性

      3.常用數(shù)集的定義及記法

      五、課后作業(yè):

      六、板書設(shè)計(jì)(略)

    【高中數(shù)學(xué)概念教學(xué)設(shè)計(jì)】相關(guān)文章:

    《函數(shù)的概念》教學(xué)設(shè)計(jì)06-04

    映射的概念教學(xué)設(shè)計(jì)12-18

    整式概念教學(xué)設(shè)計(jì)12-18

    角的概念教學(xué)設(shè)計(jì)12-13

    對(duì)數(shù)的概念的教學(xué)設(shè)計(jì)12-10

    關(guān)于教學(xué)設(shè)計(jì)的概念總結(jié)07-14

    算法的概念教學(xué)設(shè)計(jì)案例06-27

    集合概念教學(xué)設(shè)計(jì)范文04-08

    高中函數(shù)概念教學(xué)設(shè)計(jì)01-23