欧美精品手机一级在线播放,中文字幕在线欧美日韩,欧美精品中文字幕亚洲专区,国产免费观看网站

    <mark id="hrvb1"><strong id="hrvb1"></strong></mark>
  • <td id="hrvb1"></td>

    初中數(shù)學知識點總結(jié)

    時間:2023-07-20 10:34:46 知識點總結(jié) 我要投稿

    初中數(shù)學知識點總結(jié)15篇【優(yōu)選】

      總結(jié)是在一段時間內(nèi)對學習和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它能幫我們理順知識結(jié)構(gòu),突出重點,突破難點,為此要我們寫一份總結(jié)。你所見過的總結(jié)應(yīng)該是什么樣的?下面是小編幫大家整理的初中數(shù)學知識點總結(jié),僅供參考,歡迎大家閱讀。

    初中數(shù)學知識點總結(jié)15篇【優(yōu)選】

    初中數(shù)學知識點總結(jié)1

      一元一次方程定義

      通過化簡,只含有一個未知數(shù),且含有未知數(shù)的最高次項的次數(shù)是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

      一元指方程僅含有一個未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將ax+b=0(其中x是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標準形式。這里a是未知數(shù)的系數(shù),b是常數(shù),x的次數(shù)必須是1。

      即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項為1;⑷含未知數(shù)的項的系數(shù)不為0。

      一元一次方程的五個核心問題

      一、什么是等式?1+1=1是等式嗎?

      表示相等關(guān)系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數(shù)值代替等式中的字母,等式的兩邊總是相等,由數(shù)字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數(shù)值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

      一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。

      等式與代數(shù)式不同,等式中含有等號,代數(shù)式中不含等號。

      等式有兩個重要性質(zhì)1)等式的兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數(shù)除數(shù)不為零,所得結(jié)果仍然是一個等式。

      二、什么是方程,什么是一元一次方程?

      含有未知數(shù)的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數(shù),兩者缺一不可。

      只含有一個未知數(shù),并且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數(shù)),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數(shù)。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數(shù)x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結(jié)論。

      凡是談到次數(shù)的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數(shù)最少且次數(shù)最低的方程。

      三、等式有什么牛掰的基本性質(zhì)嗎?

      將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據(jù)是等式的基本性質(zhì)1。

      移項時不一定要把含未知數(shù)的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數(shù)的項移到右邊,而把常數(shù)項移到左邊,這樣會顯得簡便些。

      去分母,將未知數(shù)的系數(shù)化為1,則是依據(jù)等式的'基本性質(zhì)2進行的。

      四、等式一定是方程嗎?方程一定是等式嗎?

      等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數(shù)式,但它們還是有區(qū)別的。方程僅是含有未知數(shù)的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。

      五、"解方程"與"方程的解"是一回事兒嗎?

      方程的解是使方程左、右兩邊相等的未知數(shù)的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結(jié)果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

    初中數(shù)學知識點總結(jié)2

      1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。

      2、幾種幾何圖形的重心:

     、 線段的重心就是線段的中點;

     、 平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點;

     、 三角形的三條中線交于一點,這一點就是三角形的重心;

     、 任意多邊形都有重心,以多邊形的任意兩個頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。

      提示:⑴ 無論幾何圖形的形狀如何,重心都有且只有一個;

     、 從物理學角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。

      3、常見圖形重心的`性質(zhì):

     、 線段的重心把線段分為兩等份;

      ⑵ 平行四邊形的重心把對角線分為兩等份;

     、 三角形的重心把中線分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。

      上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復(fù)習學習數(shù)學知識。

    初中數(shù)學知識點總結(jié)3

      一、角的定義

      “靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。

      “動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

      如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

      二、角的換算:1周角=2平角=4直角=360°;

      1平角=2直角=180°;

      1直角=90°;

      1度=60分=3600秒(即:1°=60′=3600″);

      1分=60秒(即:1′=60″).

      三、余角、補角的概念和性質(zhì):

      概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。

      如果兩個角的和是一個直角,那么這兩個角叫做互為余角。

      說明:互補、互余是指兩個角的數(shù)量關(guān)系,沒有位置關(guān)系。

      性質(zhì):同角(或等角)的余角相等;

      同角(或等角)的補角相等。

      四、角的比較方法:

      角的大小比較,有兩種方法:

      (1)度量法(利用量角器);

      (2)疊合法(利用圓規(guī)和直尺)。

      五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。

      常見考法

      (1)考查與時鐘有關(guān)的問題;(2)角的計算與度量。

      誤區(qū)提醒

      角的`度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。

      【典型例題】(20xx云南曲靖)從3時到6時,鐘表的時針旋轉(zhuǎn)角的度數(shù)是( )

      【答案】3時到6時,時針旋轉(zhuǎn)的是一個周角的1/4,故是90度 ,本題選C.

    初中數(shù)學知識點總結(jié)4

      1.圓是以圓心為對稱中心的中心對稱圖形;同圓或等圓的半徑相等。

      2.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

      3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。

      4.圓是定點的距離等于定長的點的集合。

      5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合;圓的外部可以看作是圓心的距離大于半徑的點的集合。

      6.不在同一直線上的三點確定一個圓。

      7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

      推論1:

     、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;

     、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧;

      ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

      推論2:圓的兩條平行弦所夾的弧相等。

      8.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

      9.定理圓的.內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角。

      10.經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心。

      11.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

      12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑。

      13.經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

      14.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。

      15.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角。

      16.如果兩個圓相切,那么切點一定在連心線上。

      17.

     、賰蓤A外離d>R+r

     、趦蓤A外切d=R+r

      ③兩圓相交d>R-r)

     、軆蓤A內(nèi)切d=R-r(R>r)

     、輧蓤A內(nèi)含d=r)

      18.定理把圓分成n(n≥3):

     、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

      ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。

      19.定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓。

      20.弧長計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

      21.內(nèi)公切線長= d-(R-r)外公切線長= d-(R+r)。

      22.定理一條弧所對的圓周角等于它所對的圓心角的一半。

      23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

      24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

    初中數(shù)學知識點總結(jié)5

     、僦本和圓無公共點,稱相離。 AB與圓O相離,d>r。

     、谥本和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

     、壑本和圓有且只有一公共點,稱相切,這條直線叫做圓的`切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

      平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

      1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程

      如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

      如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

      如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

      2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

      當x=-C/Ax2時,直線與圓相離;

    初中數(shù)學知識點總結(jié)6

      相關(guān)的角:

      1、對頂角:一個角的'兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。

      2、互為補角:如果兩個角的和是一個平角,這兩個角做互為補角。

      3、互為余角:如果兩個角的和是一個直角,這兩個角叫做互為余角。

      4、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。

      注意:互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補角則要求兩個角有特殊的`位置關(guān)系。

      角的性質(zhì)

      1、對頂角相等。

      2、同角或等角的余角相等。

      3、同角或等角的補角相等。

    初中數(shù)學知識點總結(jié)7

      一、平移變換:

      1。概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

      2。性質(zhì):(1)平移前后圖形全等;

     。2)對應(yīng)點連線平行或在同一直線上且相等。

      3。平移的作圖步驟和方法:

      (1)分清題目要求,確定平移的方向和平移的距離;

      (2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點;

     。3)沿一定的.方向,按一定的距離平移各個關(guān)健點;

     。4)連接所作的各個關(guān)鍵點,并標上相應(yīng)的字母;

     。5)寫出結(jié)論。

      二、旋轉(zhuǎn)變換:

      1。概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動叫做旋轉(zhuǎn)。

      說明:

      (1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

     。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動。

      (3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

     。4)旋轉(zhuǎn)過程靜止時,圖形上一個點的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

      2。性質(zhì):

      (1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;

     。2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

     。3)旋轉(zhuǎn)前、后的圖形全等。

      3。旋轉(zhuǎn)作圖的步驟和方法:

     。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

     。2)找出圖形的關(guān)鍵點;

      (3)將圖形的關(guān)鍵點和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點的對應(yīng)點;

     。4)按原圖形順次連接這些對應(yīng)點,所得到的圖形就是旋轉(zhuǎn)后的圖形。

      說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

      常見考法

      (1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

     。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計一些題目。

      誤區(qū)提醒

      (1)弄反了坐標平移的上加下減,左減右加的規(guī)律;

     。2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

    初中數(shù)學知識點總結(jié)8

      第一章 豐富的圖形世界

      1、幾何圖形

      從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

      2、點、線、面、體

      (1)幾何圖形的組成

      點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

      線:面和面相交的地方是線,分為直線和曲線。

      面:包圍著體的是面,分為平面和曲面。

      體:幾何體也簡稱體。

      (2)點動成線,線動成面,面動成體。

      3、生活中的立體圖形

      生活中的立體圖形

      柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

      正有理數(shù) 整數(shù)

      有理數(shù) 零 有理數(shù)

      負有理數(shù) 分數(shù)

      2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

      3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

      4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

      5、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

      正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0;橄喾磾(shù)的兩個數(shù)的絕對值相等。

      6、有理數(shù)比較大。赫龜(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。

      7、有理數(shù)的運算:

      (1)五種運算:加、減、乘、除、乘方

      多個數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。

      有理數(shù)加法法則:

      同號兩數(shù)相加,取相同的符號,并把絕對值相加。

      異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

      一個數(shù)同0相加,仍得這個數(shù)。

      互為相反數(shù)的兩個數(shù)相加和為0。

      有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)!

      有理數(shù)乘法法則:

      兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。

      任何數(shù)與0相乘,積仍為0。

      有理數(shù)除法法則:

      兩個有理數(shù)相除,同號得正,異號得負,并把絕對值相除。

      0除以任何非0的數(shù)都得0。

      注意:0不能作除數(shù)。

      有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。

      正數(shù)的任何次冪都是正數(shù),負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù)。

      (2)有理數(shù)的運算順序

      先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

      (3)運算律

      加法交換律 加法結(jié)合律

      乘法交換律 乘法結(jié)合律

      乘法對加法的分配律

      8、科學記數(shù)法

      一般地,一個大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學記數(shù)法。(n=整數(shù)位數(shù)-1)

      第三章 整式及其加減

      1、代數(shù)式

      用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

      注意:①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;

      ②代數(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;

      ③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。

      ※代數(shù)式的書寫格式:

     、俅鷶(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;

     、跀(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;

      ③帶分數(shù)與字母相乘時,應(yīng)先把帶分數(shù)化成假分數(shù),如應(yīng)寫作;

     、軘(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;

     、菰诖鷶(shù)式中出現(xiàn)除法運算時,一般寫成分數(shù)的形式,如4÷(a-4)應(yīng)寫作;注意:分數(shù)線具有“÷”號和括號的雙重作用。

     、拊诒硎竞(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。

      2、整式:單項式和多項式統(tǒng)稱為整式。

     、賳雾検剑憾际菙(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。

      注意:1.單獨的一個數(shù)或一個字母也是單項式;2.單獨一個非零數(shù)的次數(shù)是0;3.當單項式的系數(shù)為1或-1時,這個“1”應(yīng)省略不寫,如-ab的系數(shù)是-1,a3b的系數(shù)是1。

     、诙囗検剑簬讉單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。

      3、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

      注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數(shù)也相同。

      ②同類項與系數(shù)無關(guān),與字母的排列順序無關(guān);

     、蹘讉常數(shù)項也是同類項。

      4、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

      5、去括號法則

      ①根據(jù)去括號法則去括號:

      括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。

      ②根據(jù)分配律去括號:

      括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據(jù)乘法的分配律用+1或-1去乘括號里的每一項以達到去括號的目的。

      6、添括號法則

      添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的.各項符號都要改變。

      7、整式的運算:

      整式的加減法:(1)去括號;(2)合并同類項。

      第四章 基本平面圖形

      2、直線的性質(zhì)

      (1)直線公理:經(jīng)過兩個點有且只有一條直線。(兩點確定一條直線。)

      (2)過一點的直線有無數(shù)條。

      (3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

      3、線段的性質(zhì)

      (1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)

      (2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

      (3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

      4、線段的中點:

      點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。

      5、角:

      有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉(zhuǎn)而成的。

      6、角的表示

      角的表示方法有以下四種:

      ①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。

     、谟眯懙南ED字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

     、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

      ④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

      注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。

      7、角的度量

      角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

      把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

      把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

      1°=60’,1’=60”

      8、角的平分線

      從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

      9、角的性質(zhì)

      (1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

      (2)角的大小可以度量,可以比較,角可以參與運算。

      10、平角和周角:一條射線繞著它的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當它又和始邊重合時,所形成的角叫做周角。

      11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。

      從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。

      12、圓:平面上,一條線段繞著一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

      圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。

      第五章 一元一次方程

      1、方程

      含有未知數(shù)的等式叫做方程。

      2、方程的解

      能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

      3、等式的性質(zhì)

      (1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。

      (2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。

      4、一元一次方程

      只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

      5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.

      6、解一元一次方程的一般步驟:

      (1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1

      第六章 數(shù)據(jù)的收集與整理

      1、普查與抽樣調(diào)查

      為了特定目的對全部考察對象進行的全面調(diào)查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

      從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。

      2、扇形統(tǒng)計圖

      扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)

      圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)

      3、頻數(shù)直方圖

      頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

      4、各種統(tǒng)計圖的特點

      條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

      折線統(tǒng)計圖:能清楚地反映事物的變化情況。

      扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

    初中數(shù)學知識點總結(jié)9

      一、基本知識

      一、數(shù)與代數(shù)

      A、數(shù)與式:

      1、有理數(shù):①整數(shù)→正整數(shù),0,負整數(shù);

     、诜謹(shù)→正分數(shù),負分數(shù)

      數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

     、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

     、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

      ④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

      絕對值:①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。

     、谡龜(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

      有理數(shù)的運算:帶上符號進行正常運算。

      加法:

     、偻栂嗉樱∠嗤姆,把絕對值相加。

     、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

      ③一個數(shù)與0相加不變。

      減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

      乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。

      ②任何數(shù)與0相乘得0。

     、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

      除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。

     、0不能作除數(shù)。

      乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

      混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

      2、實數(shù)

      無理數(shù)

      無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=3.1415926…

      平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

      ②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

     、垡粋正數(shù)有2個平方根;0的平方根為0;負數(shù)沒有平方根。

     、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

      立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

      ②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。

      ③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

      實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。

      ②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣;

     、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。

      3、代數(shù)式

      代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

      合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。

      ③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

      4、整式與分式

      整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

     、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

     、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

      整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

      冪的運算:

      A^M+A^N=A^(M+N)

     。ˋ^M)^N=A^(MN

     。

     。ˋ/B)^N=A^N/B^N

      除法一樣。

      整式的乘法:

     、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

     、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

     、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

      公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

      完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

      整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

     、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

      分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

      方法:提公因式法、運用公式法、分組分解法、十字相乘法。

      分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

     、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

      分式的運算:

      乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

      除法:除以一個分式等于乘以這個分式的倒數(shù)。

      加減法:①同分母分式相加減,分母不變,把分子相加減。

     、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。

      分式方程:①分母中含有未知數(shù)的方程叫分式方程。

     、谑狗匠痰姆帜笧0的解稱為原方程的增根。

      B、方程與不等式

      1、方程與方程組

      一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

     、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

      解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

      二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

      二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

      適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

      二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

      解二元一次方程組的方法:代入消元法;加減消元法。

      一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程:ax^2+bx+c=0;

      1)一元二次方程的二次函數(shù)的關(guān)系

      大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y=0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點。也就是該方程的解了

      2)一元二次方程的解法

      大家知道,二次函數(shù)有頂點式(-b/2a

      ,4ac-b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

      (1)配方法

      利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解

      (2)分解因式法

      提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

      (3)公式法

      這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

      3)解一元二次方程的步驟:

     。1)配方法的步驟:

      先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

      (2)分解因式法的步驟:

      把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

      (3)公式法

      就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

      4)韋達定理

      利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

      也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

      5)一元二次方程根的情況

      利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao

      ta”,而△=b2-4ac,這里可以分為3種情況:

      I當△>0時,一元二次方程有2個不相等的實數(shù)根;

      II當△=0時,一元二次方程有2個相同的實數(shù)根;

      III當△B,則A+C>B+C;

      在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;

      例如:如果A>B,則A-C>B-C;

      在不等式中,如果乘以同一個正數(shù),不等式符號不改向;

      例如:如果A>B,則A*C>B*C(C>0);

      在不等式中,如果乘以同一個負數(shù),不等號改向;

      例如:如果A>B,則A*C

      如果不等式乘以0,那么不等號改為等號;

      所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

      3、函數(shù)

      變量:因變量Y,自變量X。

      在用圖像表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

      一次函數(shù):①若兩個變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

     、诋擝=0時,稱Y是X的正比例函數(shù)。

      一次函數(shù)的圖像:

     、侔岩粋函數(shù)的自變量X與對應(yīng)的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖像。

     、谡壤瘮(shù)Y=KX的圖像是經(jīng)過原點的一條直線。

      ③在一次函數(shù)中,當K〈0,B〈O時,則經(jīng)234象限;

      當K〈0,B〉0時,則經(jīng)124象限;

      當K〉0,B〈0時,則經(jīng)134象限;

      當K〉0,B〉0時,則經(jīng)123象限。

     、墚擪〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

      二空間與圖形

      A、圖形的認識

      1、點,線,面

      點,線,面:①圖形是由點,線,面構(gòu)成的。

     、诿媾c面相交得線,線與線相交得點。

     、埸c動成線,線動成面,面動成體。

      展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

     、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

      截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

      視圖:主視圖,左視圖,俯視圖。

      多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

      弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

     、趫A可以分割成若干個扇形。

      2、角

      線:①線段有兩個端點。

     、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。

     、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點。

     、芙(jīng)過兩點有且只有一條直線。

      比較長短:①兩點之間的所有連線中,線段最短。兩點之間直線最短。

     、趦牲c之間線段的長度,叫做這兩點之間的距離。

      角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

     、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

      角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。

     、谝粭l射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角,180。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角,360。

     、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

      平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。

     、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

     、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。

      垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

     、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

      ③平面內(nèi),過一點有且只有一條直線與已知直線垂直。

      垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

      垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

      垂直平分線定理:

      性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

      判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

      角平分線:把一個角平分的射線叫該角的角平分線。

      定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。

      性質(zhì)定理:角平分線上的點到該角兩邊的距離相等;

      判定定理:到角的兩邊距離相等的點在該角的角平分線上;

      正方形:一組鄰邊相等的矩形是正方形

      性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

      判定:1、對角線相等的菱形2、鄰邊相等的矩形

      二、基本定理

      1、過兩點有且只有一條直線

      2、兩點之間線段最短

      3、同角或等角的補角相等

      ——補角=180-角度。

      4、同角或等角的余角相等——余角=90-角度。

      5、過一點有且只有一條直線和已知直線垂直

      6、直線外一點與直線上各點連接的所有線段中,垂線段最短

      7、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

      8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

      9、同位角相等,兩直線平行

      10、內(nèi)錯角相等,兩直線平行

      11、同旁內(nèi)角互補,兩直線平行

      12、兩直線平行,同位角相等

      13、兩直線平行,內(nèi)錯角相等

      14、兩直線平行,同旁內(nèi)角互補

      15、定理

      三角形兩邊的和大于第三邊

      16、推論

      三角形兩邊的差小于第三邊

      17、三角形內(nèi)角和定理:

      三角形三個內(nèi)角的.和等于180°

      18、推論1

      直角三角形的兩個銳角互余

      19、推論2

      三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

      20、推論3

      三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

      21、全等三角形的對應(yīng)邊、對應(yīng)角相等

      22、邊角邊公理(SAS):有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

      23、角邊角公理(

      ASA):有兩角和它們的夾邊對應(yīng)相等的

      兩個三角形全等

      24、推論(AAS):有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

      25、邊邊邊公理(SSS):有三邊對應(yīng)相等的兩個三角形全等

      26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

      27、定理1

      在角的平分線上的點到這個角的兩邊的距離相等

      28、定理2

      到一個角的兩邊的距離相同的點,在這個角的平分線上

      29、角的平分線是到角的兩邊距離相等的所有點的集合

      30、推論1

      等腰三角形頂角的平分線平分底邊并且垂直于底邊

      31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

      32、推論3

      等邊三角形的各角都相等,并且每一個角都等于60°

      33、等腰三角形的判定定理

      如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

      34、等腰三角形的性質(zhì)定理

      等腰三角形的兩個底角相等

      (即等邊對等角)

      35、推論1

      三個角都相等的三角形是等邊三角形

      36、推論

      有一個角等于60°的等腰三角形是等邊三角形

      37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

      38、直角三角形斜邊上的中線等于斜邊上的一半

      39、定理

      線段垂直平分線上的點和這條線段兩個端點的距離相等

      40、逆定理

      和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

      41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

      42、定理1

      關(guān)于某條直線對稱的兩個圖形是全等形

      43、定理

      如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

      44、定理3

      兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

      45、逆定理

      如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

      46、勾股定理

      直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

      47、勾股定理的逆定理

      如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

      48、定理

      四邊形的內(nèi)角和等于360°

      49、四邊形的外角和等于360°

      50、多邊形內(nèi)角和定理

      n邊形的內(nèi)角的和等于(n-2)×180°

      51、推論

      任意多邊的外角和等于360°

      52、平行四邊形性質(zhì)定理1

      平行四邊形的對角相等

      53、平行四邊形性質(zhì)定理2

      平行四邊形的對邊相等

      54、推論

      夾在兩條平行線間的平行線段相等

      55、平行四邊形性質(zhì)定理3

      平行四邊形的對角線互相平分

      56、平行四邊形判定定理1

      兩組對角分別相等的四邊形是平行四邊形

      57、平行四邊形判定定理2

      兩組對邊分別相等的四邊

      形是平行四邊形

      58、平行四邊形判定定理3

      對角線互相平分的四邊形是平行四邊形

      59、平行四邊形判定定理4

      一組對邊平行相等的四邊形是平行四邊形

      60、矩形性質(zhì)定理1

      矩形的四個角都是直角

      61、矩形性質(zhì)定理2

      矩形的對角線相等

      62、矩形判定定理1

      有三個角是直角的四邊形是矩形

      63、矩形判定定理2

      對角線相等的平行四邊形是矩形

      64、菱形性質(zhì)定理1

      菱形的四條邊都相等

      65、菱形性質(zhì)定理2

      菱形的對角線互相垂直,并且每一條對角線平分一組對角

      66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

      67、菱形判定定理1

      四邊都相等的四邊形是菱形

      68、菱形判定定理2

      對角線互相垂直的平行四邊形是菱形

      69、正方形性質(zhì)定理1

      正方形的四個角都是直角,四條邊都相等

      70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

      71、定理1

      關(guān)于中心對稱的兩個圖形是全等的

      72、定理2

      關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

      73、逆定理

      如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

      74、等腰梯形性質(zhì)定理

      等腰梯形在同一底上的兩個角相等

      75、等腰梯形的兩條對角線相等

      76、等腰梯形判定定理

      在同一底上的兩個角相等的梯

      形是等腰梯形

      77、對角線相等的梯形是等腰梯形

      78、平行線等分線段定理

      如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

      79、推論1

      經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

      80、推論2

      經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

      81、三角形中位線定理

      三角形的中位線平行于第三邊,并且等于它的一半

      82、梯形中位線定理

      梯形的中位線平行于兩底,并且等于兩底和的一半

      L=(a+b)÷2

      S=L×h

      83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

      如果

      ad=bc,那么a:b=c:d

      84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

      85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

      86、平行線分線段成比例定理

      三條平行線截兩條直線,所得的對應(yīng)線段成比例

      87、推論

      平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

      88、定理

      如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

      89、平行于三角形的一邊,并且和其他兩邊相交的直線,

      所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

      90、定理

      平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

      91、相似三角形判定定理1

      兩角對應(yīng)相等,兩三角形相似(ASA)

      92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

      93、判定定理2

      兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

      94、判定定理3

      三邊對應(yīng)成比例,兩三角形相似(SSS)

      95、定理

      如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似(HL)

      96、性質(zhì)定理1

      相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

      97、性質(zhì)定理2

      相似三角形周長的比等于相似比

      98、性質(zhì)定理3

      相似三角形面積的比等于相似比的平方

      99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

      (a<90)

      100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

      101、圓是定點的距離等于定長的點的集合

      102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

      103、圓的外部可以看作是圓心的距離大于半徑的點的集合

      104、同圓或等圓的半徑相等

      105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

      106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

      107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

      108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

      109、定理

      不在同一直線上的三點確定一個圓。

      110、垂徑定理

      垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      111、推論1

     、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

      ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧(直徑)

     、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      112、推論2

      圓的兩條平行弦所夾的弧相等

      113、圓是以圓心為對稱中心的中心對稱圖形

      114、定理

      在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      115、推論

      在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

      116、定理

      一條弧所對的圓周角等于它所對的圓心角的一半

      117、推論1

      同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

      118、推論2

      半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

      119、推論3

      如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

      120、定理

      圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

      121、①直線L和⊙O相交

      0<=d<r

     、谥本L和⊙O相切

      d=r

      ③直線L和⊙O相離

      d>r

      122、切線的判定定理

      經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

      123、切線的性質(zhì)定理

      圓的切線垂直于經(jīng)過切點的半徑

      124、推論1

      經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

      125、推論2

      經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

      126、切線長定理

      從圓外一點引圓的兩條切線相交與一點,它們的切線長相等

      ,圓心和這一點的連線平分兩條切線的夾角

      127、圓的外切四邊形的兩組對邊的和相等

      128、弦切角定理

      弦切角等于它所夾的弧對的圓周角?

      129、推論

      如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

      130、相交弦定理

      圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

      131、推論

      如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

      132、切割線定理

      從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

      133、推論

      從圓外一點引圓的兩條割線,這一點到每條

      割線與圓的交點的兩條線段長的積相等

      134、如果兩個圓相切,那么切點一定在連心線上

      135、①兩圓外離

      d>R+r

      ②兩圓外切

      d=R+r

     、蹆蓤A相交

      R-r<d<R+r(R>r)

      ④兩圓內(nèi)切

      d=R-r(R>r)

     、輧蓤A內(nèi)含

      d<R-r(R>r)

      136、定理

      相交兩圓的連心線垂直平分兩圓的公共弦

      137、定理

      把圓平均分成n(n≥3):

     、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

     、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

      138、定理

      任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

      139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

      140、定理

      正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

      141、正n邊形的面積Sn=pn*rn/2

      p表示正n邊形的周長

      142、正三角形面積√3a^2/4

      a表示邊長

      143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

      144、弧長計算公式:L=n兀R/180——》L=nR

      145、扇形面積公式:S扇形=n兀R^2/360=LR/2

      146、內(nèi)公切線長=d-(R-r)

      外公切線長=d-(R+r)

    初中數(shù)學知識點總結(jié)10

      一、函數(shù)及其相關(guān)概念

      1、變量與常量

      在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

      一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。

      2、函數(shù)解析式

      用來表示函數(shù)關(guān)系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

      使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

      3、函數(shù)的三種表示法及其優(yōu)缺點

      (1)解析法

      兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。

      (2)列表法

      把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

      (3)圖像法

      用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

      4、由函數(shù)解析式畫其圖像的一般步驟

      (1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值

      (2)描點:以表中每對對應(yīng)值為坐標,在坐標平面內(nèi)描出相應(yīng)的點

      (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

      二、相交線與平行線

      1、知識網(wǎng)絡(luò)結(jié)構(gòu)

      2、知識要點

     。1)在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

      (2)在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

     。3)兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是

      鄰補角。鄰補角的性質(zhì):鄰補角互補。如圖1所示,與互為鄰補角,

      與互為鄰補角。+=180°;+=180°;+=180°;+=180°。

      3、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的.性質(zhì):對頂角相等。如圖1所示,與互為對頂角。=; =。

      4、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,

      其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。

      垂線的性質(zhì):

      性質(zhì)1:過一點有且只有一條直線與已知直線垂直。

      性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

      性質(zhì)3:如圖2所示,當a⊥b時,====90°。

      點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

      5、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:

      在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣的兩個角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。

      在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫內(nèi)錯角。圖3中,共有對內(nèi)錯角:與是內(nèi)錯角;與是內(nèi)錯角。

      在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內(nèi)角。圖3中,共有對同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。

      三、實數(shù)

      1、實數(shù)的分類

     。1)按定義分類:

     。2)按性質(zhì)符號分類:

      注:0既不是正數(shù)也不是負數(shù).

      2、實數(shù)的相關(guān)概念

     。1)相反數(shù)

     、俅鷶(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.

     、趲缀我饬x:在數(shù)軸上原點的兩側(cè),與原點距離相等的兩個點表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱.

      ③互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù)a+b=0.

     。2)絕對值|a|≥0.

     。3)倒數(shù)(1)0沒有倒數(shù)(2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù).

     。4)平方根

      ①如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負數(shù)沒有平方根.a(a≥0)的平方根記作.

     、谝粋正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.

     。5)立方根

      如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零.

      3、實數(shù)與數(shù)軸

      數(shù)軸定義:規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.

      4、實數(shù)大小的比較

     。1)對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大.

     。2)正數(shù)都大于0,負數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負數(shù);絕對值大的反而小.

     。3)無理數(shù)的比較大。

    初中數(shù)學知識點總結(jié)11

      一、圓

      1、圓的有關(guān)性質(zhì)

      在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

      由圓的意義可知:

      圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

      就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。

      圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

      圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

      圓心相同,半徑不相等的兩個圓叫同心圓。

      能夠重合的兩個圓叫等圓。

      同圓或等圓的半徑相等。

      在同圓或等圓中,能夠互相重合的弧叫等弧。

      二、過三點的圓

      l、過三點的圓

      過三點的圓的作法:利用中垂線找圓心

      定理不在同一直線上的三個點確定一個圓。

      經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。

      2、反證法

      反證法的三個步驟:

     、偌僭O(shè)命題的.結(jié)論不成立;

     、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

     、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

      例如:求證三角形中最多只有一個角是鈍角。

      證明:設(shè)有兩個以上是鈍角

      則兩個鈍角之和>180°

      與三角形內(nèi)角和等于180°矛盾。

      ∴不可能有二個以上是鈍角。

      即最多只能有一個是鈍角。

      三、垂直于弦的直徑

      圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

      垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

      推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

      弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

      平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

      推理2:圓兩條平行弦所夾的弧相等。

      四、圓心角、弧、弦、弦心距之間的關(guān)系

      圓是以圓心為對稱中心的中心對稱圖形。

      實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。

      頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

      定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

      推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

      五、圓周角

      頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

      推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

      推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

      推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

      由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

    初中數(shù)學知識點總結(jié)12

      動點與函數(shù)圖象問題常見的四種類型:

       1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      2、四邊形中的動點問題:動點沿四邊形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      3、圓中的動點問題:動點沿圓周運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      圖形運動與函數(shù)圖象問題常見的三種類型:

      1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象.

      2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象.

      3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象.

      動點問題常見的四種類型:

      1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

      2、四邊形中的.動點問題:動點沿四邊形的邊運動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

      3、圓中的動點問題:動點沿圓周運動,探究構(gòu)成的新圖形的邊角等關(guān)系.

      4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.

      總結(jié)反思:

       本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

      解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認識,發(fā)掘“動”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達到解題目的.

      解答函數(shù)的圖象問題一般遵循的步驟:

       1、根據(jù)自變量的取值范圍對函數(shù)進行分段.

      2、求出每段的解析式.

      3、由每段的解析式確定每段圖象的形狀.

      對于用圖象描述分段函數(shù)的實際問題,要抓住以下幾點:

      1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

      2、自變量變化函數(shù)值也變化的增減變化情況.

      3、函數(shù)圖象的最低點和最高點.

    初中數(shù)學知識點總結(jié)13

      1、一元二次方程解法:

      (1)配方法:(X±a)2=b(b≥0)注:二次項系數(shù)必須化為1

      (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0

      若b2-4ac>0則有兩個不相等的實根,若b2-4ac=0則有兩個相等的'實根,若b2-4ac<0則無解

      若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

      (3)分解因式法

     、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

      平方差公式:a2-b2=0→(a+b)(a-b)=0

     、谶\用公式法:

      完全平方公式:a2±2ab+b2=0→(a±b)2=0

      ③十字相乘法

      2、銳角三角函數(shù)定義

      銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

      正弦(sin):對邊比斜邊,即sinA=a/c;

      余弦(cos):鄰邊比斜邊,即cosA=b/c;

      正切(tan):對邊比鄰邊,即tanA=a/b;

      余切(cot):鄰邊比對邊,即cotA=b/a;

      3、積的關(guān)系

      sinα=tanα·cosα

      cosα=cotα·sinα

      tanα=sinα·secα

      cotα=cosα·cscα

      secα=tanα·cscα

      cscα=secα·cotα

      4、倒數(shù)關(guān)系

      tanα·cotα=1

      sinα·cscα=1

      cosα·secα=1

      5、兩角和差公式

      sin(A+B) = sinAcosB+cosAsinB

      sin(A-B) = sinAcosB-cosAsinB

      cos(A+B) = cosAcosB-sinAsinB

      cos(A-B) = cosAcosB+sinAsinB

      tan(A+B) = (tanA+tanB)/(1-tanAtanB)

      tan(A-B) = (tanA-tanB)/(1+tanAtanB)

      cot(A+B) = (cotAcotB-1)/(cotB+cotA)

      cot(A-B) = (cotAcotB+1)/(cotB-cotA)

    初中數(shù)學知識點總結(jié)14

      1.有理數(shù):

      (1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

     。2)有理數(shù)的分類:① ②

      2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

      3.相反數(shù):

     。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

     。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

      4.絕對值:

      (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

     。2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

      5.有理數(shù)比大。海1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而。唬5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

      6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負倒數(shù)。

      7.有理數(shù)加法法則:

      (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

     。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的'絕對值減去較小的絕對值;

     。3)一個數(shù)與0相加,仍得這個數(shù)。

      8.有理數(shù)加法的運算律:

     。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

      9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。

      10.有理數(shù)乘法法則:

      (1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

     。2)任何數(shù)同零相乘都得零;

     。3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。

      11.有理數(shù)乘法的運算律:

     。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

     。3)乘法的分配律:a(b+c)=ab+ac 。

      12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),。

      13.有理數(shù)乘方的法則:

     。1)正數(shù)的任何次冪都是正數(shù);

     。2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。

      14.乘方的定義:

     。1)求相同因式積的運算,叫做乘方;

      (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

      15.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法。

      16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

      17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

      18.混合運算法則:先乘方,后乘除,最后加減。

      本章內(nèi)容要求學生正確認識有理數(shù)的概念,在實際生活和學習數(shù)軸的基礎(chǔ)上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題。

      體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要。激發(fā)學生學習數(shù)學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學生學習的主體性地位。

    初中數(shù)學知識點總結(jié)15

      其實角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。

      角的靜態(tài)定義

      具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

      角的動態(tài)定義

      一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

      角的符號

      角的符號:∠

      角的種類

      在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

      銳角:大于0°,小于90°的角叫做銳角。

      直角:等于90°的角叫做直角。

      鈍角:大于90°而小于180°的角叫做鈍角。

      平角:等于180°的角叫做平角。

      優(yōu)角:大于180°小于360°叫優(yōu)角。

      劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

      角周角:等于360°的角叫做周角。

      負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。

      正角:逆時針旋轉(zhuǎn)的角為正角。

      0角:等于零度的角。

      特殊角

      余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。

      對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚角相等。

      鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個角,互為鄰補角。

      內(nèi)錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的

      內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對角叫做內(nèi)錯角(alternate interior angle )。如:∠1和∠6,∠2和∠5

      同旁內(nèi)角:兩個角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的'一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6

      同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

      外錯角:兩條直線被第三條直線所截,構(gòu)成了八個角。如果兩個角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。

      同旁外角:兩個角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7

      終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:

      A{bb=k_360+a,k∈Z}表示角度制;

      B{bb=2kπ+a,k∈Z}表示弧度制

    【初中數(shù)學知識點總結(jié)】相關(guān)文章:

    初中數(shù)學的知識點總結(jié)12-12

    初中數(shù)學知識點總結(jié)01-21

    數(shù)學初中知識點總結(jié)04-25

    初中數(shù)學必學的知識點總結(jié)04-24

    初中數(shù)學《整式》知識點總結(jié)10-21

    初中數(shù)學畢業(yè)知識點總結(jié)07-06

    初中數(shù)學圓的知識點總結(jié)12-05

    初中數(shù)學幾何知識點總結(jié)03-01

    初中數(shù)學函數(shù)知識點總結(jié)11-24

    初中數(shù)學知識點總結(jié)11-03