欧美精品手机一级在线播放,中文字幕在线欧美日韩,欧美精品中文字幕亚洲专区,国产免费观看网站

    <mark id="hrvb1"><strong id="hrvb1"></strong></mark>
  • <td id="hrvb1"></td>

    初中數(shù)學(xué)知識點總結(jié)

    時間:2024-03-07 16:20:28 知識點總結(jié) 我要投稿

    初中數(shù)學(xué)知識點總結(jié)

      總結(jié)是對某一特定時間段內(nèi)的學(xué)習(xí)和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它能夠給人努力工作的動力,不如立即行動起來寫一份總結(jié)吧。但是總結(jié)有什么要求呢?下面是小編整理的初中數(shù)學(xué)知識點總結(jié),僅供參考,大家一起來看看吧。

    初中數(shù)學(xué)知識點總結(jié)

    初中數(shù)學(xué)知識點總結(jié)1

      三角形的知識點

      1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

      2、三角形的分類

      3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

      4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

      5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

      6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

      7、高線、中線、角平分線的意義和做法

      8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。

      9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

      推論1直角三角形的兩個銳角互余

      推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和

      推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

      10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

      11、三角形外角的性質(zhì)

      (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

      (2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;

      (3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;

      (4)三角形的外角和是360°。

      四邊形(含多邊形)知識點、概念總結(jié)

    一、平行四邊形的定義、性質(zhì)及判定

      1、兩組對邊平行的四邊形是平行四邊形。

      2、性質(zhì):

      (1)平行四邊形的對邊相等且平行

      (2)平行四邊形的對角相等,鄰角互補(bǔ)

      (3)平行四邊形的對角線互相平分

      3、判定:

      (1)兩組對邊分別平行的四邊形是平行四邊形

      (2)兩組對邊分別相等的四邊形是平行四邊形

      (3)一組對邊平行且相等的四邊形是平行四邊形

      (4)兩組對角分別相等的四邊形是平行四邊形

      (5)對角線互相平分的四邊形是平行四邊形

      4、對稱性:平行四邊形是中心對稱圖形

      二、矩形的定義、性質(zhì)及判定

      1、定義:有一個角是直角的平行四邊形叫做矩形

      2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等

      3、判定:

      (1)有一個角是直角的平行四邊形叫做矩形

      (2)有三個角是直角的四邊形是矩形

      (3)兩條對角線相等的平行四邊形是矩形

      4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

      三、菱形的定義、性質(zhì)及判定

      1、定義:有一組鄰邊相等的平行四邊形叫做菱形

      (1)菱形的四條邊都相等

      (2)菱形的對角線互相垂直,并且每一條對角線平分一組對角

      (3)菱形被兩條對角線分成四個全等的直角三角形

      (4)菱形的面積等于兩條對角線長的積的一半

      2、s菱=爭6(n、6分別為對角線長)

      3、判定:

      (1)有一組鄰邊相等的平行四邊形叫做菱形

      (2)四條邊都相等的四邊形是菱形

      (3)對角線互相垂直的平行四邊形是菱形

      4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

      四、正方形定義、性質(zhì)及判定

      1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

      2、性質(zhì):

      (1)正方形四個角都是直角,四條邊都相等

      (2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

      (3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

      (4)正方形的對角線與邊的夾角是45°

      (5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

      3、判定:

      (1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

      (2)先判定一個四邊形是菱形,再判定出有一個角是直角

      4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

     五、梯形的定義、等腰梯形的性質(zhì)及判定

      1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

      2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

      3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

      4、對稱性:等腰梯形是軸對稱圖形

      六、三角形的中位線平行于三角形的第三邊并等于第三邊的.一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

      七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。

      八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

      九、多邊形

      1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

      2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

      3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

      4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

      5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

      6、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。

      7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

      8、公式與性質(zhì)

      多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

      9、多邊形外角和定理:

      (1)n邊形外角和等于n·180°-(n-2)·180°=360°

      (2)邊形的每個內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°

      10、多邊形對角線的條數(shù):

      (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

      (2)n邊形共有n(n-3)/2條對角線

      圓知識點、概念總結(jié)

      1、不在同一直線上的三點確定一個圓。

      2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

     、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

     、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      推論2圓的兩條平行弦所夾的弧相等

      3、圓是以圓心為對稱中心的中心對稱圖形

      4、圓是定點的距離等于定長的點的集合

      5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

      6、圓的外部可以看作是圓心的距離大于半徑的點的集合

      7、同圓或等圓的半徑相等

      8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

      9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

      11、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

      12、①直線L和⊙O相交d

     、谥本L和⊙O相切d=r

     、壑本L和⊙O相離d>r

      13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

      14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

      15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

      16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

      17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

      18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

      19、如果兩個圓相切,那么切點一定在連心線上

      20、①兩圓外離d>R+r

     、趦蓤A外切d=R+r

     、蹆蓤A相交R-rr)

     、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

      21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

      22、定理:把圓分成n(n≥3):

      (1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

      (2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

      23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

      24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

      25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

      26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

      27、正三角形面積√3a/4a表示邊長

      28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

      29、弧長計算公式:L=n兀R/180

      30、扇形面積公式:S扇形=n兀R^2/360=LR/2

      31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

      32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

      33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

      34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

      35、弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

    初中數(shù)學(xué)知識點總結(jié)2

      第一章圖形的變換

      考點一、平移(3~5分)

      1、定義

      把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動叫做平移變換,簡稱平移。

      2、性質(zhì)

      (1)平移不改變圖形的大小和形狀,但圖形上的每個點都沿同一方向進(jìn)行了移動

      (2)連接各組對應(yīng)點的線段平行(或在同一直線上)且相等。

      考點二、軸對稱(3~5分)

      1、定義

      把一個圖形沿著某條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線成軸對稱,該直線叫做對稱軸。

      2、性質(zhì)

      (1)關(guān)于某條直線對稱的兩個圖形是全等形。

      (2)如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線。

      (3)兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上。

      3、判定

      如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

      4、軸對稱圖形

      把一個圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。

      考點三、旋轉(zhuǎn)(3~8分)

      1、定義

      把一個圖形繞某一點o轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。

      2、性質(zhì)

      (1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等。

      (2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。

      考點四、中心對稱(3分)

      1、定義

      把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

      2、性質(zhì)

      (1)關(guān)于中心對稱的兩個圖形是全等形。

      (2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。

      (3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。

      3、判定

      如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。

      4、中心對稱圖形

      把一個圖形繞某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。

      考點五、坐標(biāo)系中對稱點的特征(3分)

      1、關(guān)于原點對稱的點的特征

      兩個點關(guān)于原點對稱時,它們的坐標(biāo)的符號相反,即點p(x,y)關(guān)于原點的對稱點為p’(-x,-y)

      2、關(guān)于x軸對稱的點的特征

      兩個點關(guān)于x軸對稱時,它們的坐標(biāo)中,x相等,y的符號相反,即點p(x,y)關(guān)于x軸的對稱點為p’(x,-y)

      3、關(guān)于y軸對稱的點的特征

      兩個點關(guān)于y軸對稱時,它們的坐標(biāo)中,y相等,x的符號相反,即點p(x,y)關(guān)于y軸的對稱點為p’(-x,y)

      第二章圖形的相似

      考點一、比例線段(3分)

      1、比例線段的相關(guān)概念

      如果選用同一長度單位量得兩條線段a,b的長度分別為m,n,那么就說這兩條線段的比是,或?qū)懗蒩:b=m:n

      在兩條線段的比a:b中,a叫做比的前項,b叫做比的后項。

      在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡稱比例線段

      若四條a,b,c,d滿足或a:b=c:d,那么a,b,c,d叫做組成比例的項,線段a,d叫做比例外項,線段b,c叫做比例內(nèi)項,線段的d叫做a,b,c的第四比例項。

      如果作為比例內(nèi)項的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項。

      2、比例的性質(zhì)

      (1)基本性質(zhì)

     、賏:b=c:dad=bc

     、赼:b=b:c

      (2)更比性質(zhì)(交換比例的內(nèi)項或外項)

      (交換內(nèi)項)

      (交換外項)

      (同時交換內(nèi)項和外項)

      (3)反比性質(zhì)(交換比的前項、后項):

      (4)合比性質(zhì):

      (5)等比性質(zhì):

      3、黃金分割

      把線段ab分成兩條線段ac,bc(ac>bc),并且使ac是ab和bc的比例中項,叫做把線段ab黃金分割,點c叫做線段ab的黃金分割點,其中ac=ab0.618ab

      考點二、平行線分線段成比例定理(3~5分)

      三條平行線截兩條直線,所得的對應(yīng)線段成比例。

      推論:

      (1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例。

      逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。

      (2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對應(yīng)成比例。

      考點三、相似三角形(3~8分)

      1、相似三角形的.概念

      對應(yīng)角相等,對應(yīng)邊成比例的三角形叫做相似三角形。相似用符號“∽”來表示,讀作“相似于”。相似三角形對應(yīng)邊的比叫做相似比(或相似系數(shù))。

      2、相似三角形的基本定理

      平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。

      用數(shù)學(xué)語言表述如下:

      ∵de∥bc,∴△ade∽△abc

      相似三角形的等價關(guān)系:

      (1)反身性:對于任一△abc,都有△abc∽△abc;

      (2)對稱性:若△abc∽△a’b’c’,則△a’b’c’∽△abc

      (3)傳遞性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,則△abc∽△a’’b’’c’’。

      3、三角形相似的判定

      (1)三角形相似的判定方法

      ①定義法:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似

     、谄叫蟹ǎ浩叫杏谌切我贿叺闹本和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

     、叟卸ǘɡ1:如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似,可簡述為兩角對應(yīng)相等,兩三角形相似。

     、芘卸ǘɡ2:如果一個三角形的兩條邊和另一個三角形的兩條邊對應(yīng)相等,并且夾角相等,那么這兩個三角形相似,可簡述為兩邊對應(yīng)成比例且夾角相等,兩三角形相似。

     、菖卸ǘɡ3:如果一個三角形的三條邊與另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似,可簡述為三邊對應(yīng)成比例,兩三角形相似

      (2)直角三角形相似的判定方法

     、僖陨细鞣N判定方法均適用

      ②定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

     、鄞怪狈ǎ褐苯侨切伪恍边吷系母叻殖傻膬蓚直角三角形與原三角形相似。

      4、相似三角形的性質(zhì)

      (1)相似三角形的對應(yīng)角相等,對應(yīng)邊成比例

      (2)相似三角形對應(yīng)高的比、對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

      (3)相似三角形周長的比等于相似比

      (4)相似三角形面積的比等于相似比的平方。

      5、相似多邊形

      (1)如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,對應(yīng)邊成比例,那么這兩個多邊形叫做相似多邊形。相似多邊形對應(yīng)邊的比叫做相似比(或相似系數(shù))

      (2)相似多邊形的性質(zhì)

     、傧嗨贫噙呅蔚膶(yīng)角相等,對應(yīng)邊成比例

      ②相似多邊形周長的比、對應(yīng)對角線的比都等于相似比

     、巯嗨贫噙呅沃械膶(yīng)三角形相似,相似比等于相似多邊形的相似比

     、芟嗨贫噙呅蚊娣e的比等于相似比的平方

      6、位似圖形

      如果兩個圖形不僅是相似圖形,而且每組對應(yīng)點所在直線都經(jīng)過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,此時的相似比叫做位似比。

      性質(zhì):每一組對應(yīng)點和位似中心在同一直線上,它們到位似中心的距離之比都等于位似比。

      由一個圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個圖形放大或縮小。

    初中數(shù)學(xué)知識點總結(jié)3

      一、“三步六環(huán)”復(fù)習(xí)課型范式構(gòu)建的背景分析

     。ㄒ唬┏跞龜(shù)學(xué)總復(fù)習(xí)的低效教學(xué)影響了中考教學(xué)質(zhì)量的提高

      初三數(shù)學(xué)的復(fù)習(xí)教學(xué),注重“四基”(基礎(chǔ)知識、基本技能、基本思想和基本活動經(jīng)驗)的鞏固和“四能”(發(fā)現(xiàn)問題、提出問題、分析問題、解決問題的能力)的提升。由于受復(fù)習(xí)教學(xué)方法傳統(tǒng)、時間不足等因素的限制,往往不能處理好知識鞏固與能力提升之間的關(guān)系,導(dǎo)致復(fù)習(xí)教學(xué)實效不強(qiáng)。尤其是在初三下學(xué)期的復(fù)習(xí)教學(xué)中,大多數(shù)教師采用“一基礎(chǔ)二專題三綜合”的復(fù)習(xí)方式,使得復(fù)習(xí)教學(xué)“高耗低效”,不能大大提高學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。同時在復(fù)習(xí)教學(xué)中,往往采用市面上的教輔資料,內(nèi)容超標(biāo),試題偏難,不符合復(fù)習(xí)教學(xué)的要求,制約著初三中考數(shù)學(xué)教學(xué)質(zhì)量的提高。

     。ǘ叭搅h(huán)”復(fù)習(xí)課型范式是課改實驗教學(xué)的時代產(chǎn)物

      目前,基礎(chǔ)教育課程改革深入推進(jìn),雖然帶來了許多可喜的變化,但許多一線初三教師在實踐中看到了許多隱藏的教學(xué)危機(jī)。如何利用小組合作學(xué)習(xí)提高初三中考的教學(xué)質(zhì)量,是許多課改實驗學(xué)校面臨的重大課題。筆者對任教學(xué)校班級的學(xué)生進(jìn)行了抽樣訪談,訪談分析反映出初三學(xué)生數(shù)學(xué)總復(fù)習(xí)階段的四個問題:一是不熟悉中考數(shù)學(xué)考綱的考試要求和考試目標(biāo),沒有明確的初三數(shù)學(xué)總復(fù)習(xí)的方向;二是數(shù)學(xué)基礎(chǔ)知識掌握不夠全面,沒有完整的認(rèn)知結(jié)構(gòu),對初中數(shù)學(xué)知識的邏輯關(guān)系不清晰;三是數(shù)學(xué)基本解題技能掌握不足,對初中數(shù)學(xué)知識的應(yīng)用把握不清;四是數(shù)學(xué)基本思想和基本活動經(jīng)驗欠缺,不能靈活地運用所學(xué)知識和技能。

      “三步六環(huán)”復(fù)習(xí)課型范式的實踐研究,能轉(zhuǎn)變教師復(fù)習(xí)課的教學(xué)理念,建立更加適合本地區(qū)教學(xué)實際情況的初三數(shù)學(xué)“三步六環(huán)”復(fù)習(xí)課型的范式,掌握更加科學(xué)有效的復(fù)習(xí)方法,形成優(yōu)質(zhì)的初三數(shù)學(xué)復(fù)習(xí)教學(xué)資源,提升初三教師的數(shù)學(xué)專業(yè)能力,轉(zhuǎn)變學(xué)生的數(shù)學(xué)學(xué)習(xí)方式,提升學(xué)生的課堂參與度,變被動的枯燥復(fù)習(xí)為主動的興趣探究,從而提高初三數(shù)學(xué)的教學(xué)質(zhì)量。

      二、“三步六環(huán)”復(fù)習(xí)課型范式構(gòu)建的策略分析

      (一)關(guān)鍵詞的概念界定

      1、復(fù)習(xí)課型。復(fù)習(xí)課型是根據(jù)學(xué)生的`認(rèn)知特點和規(guī)律,在學(xué)習(xí)的某一階段,以鞏固、疏理已學(xué)知識、技能,促進(jìn)知識系統(tǒng)化,提高學(xué)生運用所學(xué)知識解決問題的能力為主要任務(wù)的一種課型。開展數(shù)學(xué)復(fù)習(xí)課的目的是溫故知新,查漏補(bǔ)缺,完善認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生解題思想方法的形成,發(fā)展數(shù)學(xué)能力,增強(qiáng)學(xué)生運用數(shù)學(xué)知識解決問題的能力。

      2、“三步六環(huán)”。這是一種適合初三數(shù)學(xué)總復(fù)習(xí)教學(xué)的高效課堂模式,其基本框架如下:

      主要包括:

     。1)“三步”:第一步“先做后講”,體現(xiàn)在三點:①學(xué)生提前1~2天完成下發(fā)的復(fù)習(xí)導(dǎo)學(xué)案;②老師及時批改了解學(xué)生的預(yù)習(xí)情況;③老師根據(jù)考綱、課標(biāo),結(jié)合學(xué)生的預(yù)習(xí)反饋進(jìn)行二次備課。

      第二步“反思診斷”,體現(xiàn)在四點:①有反思――作業(yè)講評;②有跟進(jìn)――針對內(nèi)容的重難點和學(xué)生的易錯點;③有變式――針對內(nèi)容的重難點和學(xué)生的易錯點;④有系統(tǒng)――二次訂正整理。

      第三步“滾動測試”,體現(xiàn)在兩點:①滾動及時――重點考查近期重難點、易錯點知識;②反饋評價――關(guān)注師徒、小組捆綁評價。

     。2)“六環(huán)”:指初三數(shù)學(xué)復(fù)習(xí)課堂教學(xué)的六個步驟:自主復(fù)習(xí)、合作交流、展示質(zhì)疑、典例精講、訓(xùn)練達(dá)標(biāo)、總結(jié)評價。這六環(huán)環(huán)h遞進(jìn)、相輔相成。只有保持復(fù)習(xí)課堂高效的可持續(xù)性,才能保障中考教學(xué)質(zhì)量的提升,這里很關(guān)鍵的兩點因素應(yīng)務(wù)必關(guān)注:其一,教師要精心研讀課標(biāo)考綱,悉心研究中考試題,用心編制總復(fù)習(xí)導(dǎo)學(xué)案,為學(xué)生高效進(jìn)行總復(fù)習(xí)指明方向;其二,課堂教學(xué)中的發(fā)展性評價應(yīng)及時跟進(jìn),讓學(xué)生學(xué)會反思?xì)w納,分享復(fù)習(xí)的快樂。

    初中數(shù)學(xué)知識點總結(jié)4

      1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等

      5過一點有且只有一條直線和已知直線垂直

      6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

      17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余

      19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等

      22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

      26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合

      30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°

      34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

      35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形

      37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

      39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

      40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

      41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形

      43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

      45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

      46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

      47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

      48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

      50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

      52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等

      55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

      56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個角都是直角61矩形性質(zhì)定理2矩形的對角線相等

      62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

      65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

      70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

      71定理1關(guān)于中心對稱的兩個圖形是全等的

      72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

      73逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

      74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等

      76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

      78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

      79推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半

      L=(a+b)÷2S=L×h

      83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),

      那么(a+c+…+m)/(b+d+…+n)=a/b

      86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例

      87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

      89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

      90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

      91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

      95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

      96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97性質(zhì)定理2相似三角形周長的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方

      99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

      101圓是定點的距離等于定長的點的集合

      102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等

      105到定點的距離等于定長的點的'軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

      108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點確定一個圓。

      110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

      ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

     、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

      114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

      116定理一條弧所對的圓周角等于它所對的圓心角的一半

      117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

      126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

      127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等于它所夾的弧對的圓周角

      129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

      131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

      133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

      134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r

     、趦蓤A外切d=R+r

      ③兩圓相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)

      136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

     、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

     、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

      (n2)180139正n邊形的每個內(nèi)角都等于

      n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

      pnrn141正n邊形的面積Sn=p表示正n邊形的周長

      2142正三角形面積

      32aa表示邊長4143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,

      k(n2)180360化為(n-2)(k-2)=4因此

      n144弧長計算公式:L=

      nR180nR2LR145扇形面積公式:S扇形==

      3602146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

      公式分類及公式表達(dá)式

      乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

      一元二次方程的解

      bb24ac2a

      根與系數(shù)的關(guān)系:X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式

      b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根b2-4ac

    初中數(shù)學(xué)知識點總結(jié)5

      1、重心的定義:

      平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。

      2、幾種幾何圖形的重心:

     、啪段的重心就是線段的中點;

     、破叫兴倪呅渭疤厥馄叫兴倪呅蔚'重心是它的兩條對角線的交點;

      ⑶三角形的三條中線交于一點,這一點就是三角形的重心;

     、热我舛噙呅味加兄匦,以多邊形的任意兩個頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。

      提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個;

     、茝奈锢韺W(xué)角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。

      3、常見圖形重心的性質(zhì):

      ⑴線段的重心把線段分為兩等份;

      ⑵平行四邊形的重心把對角線分為兩等份;

     、侨切蔚闹匦陌阎芯分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。

      上面對重心知識點的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識。

     、僦本和圓無公共點,稱相離。 AB與圓O相離,d>r。

     、谥本和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

      ③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

      平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

      1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程

      如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

      如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

      如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

      2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

      當(dāng)x=-C/Ax2時,直線與圓相離;

    初中數(shù)學(xué)知識點總結(jié)6

      平面直角坐標(biāo)系

      下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

      平面直角坐標(biāo)系:

      在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

      水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

      平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

      三個規(guī)定:

      ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

     、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

     、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

      相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

      初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成

      對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

      平面直角坐標(biāo)系的構(gòu)成

      在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

      通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

      初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)

      下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

      點的坐標(biāo)的性質(zhì)

      建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

      對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

      一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

      希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

      初中數(shù)學(xué)知識點:因式分解的一般步驟

      關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

      因式分解的一般步驟

      如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

      通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

      注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的'積的形式。

      相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

      初中數(shù)學(xué)知識點:因式分解

      下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

      因式分解定義

      把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

      因式分解要素

     、俳Y(jié)果必須是整式

      ②結(jié)果必須是積的形式

     、劢Y(jié)果是等式

      ④因式分解與整式乘法的關(guān)系:m(a+b+c)

      公因式:

      一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

      公因式確定方法

     、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。

     、谙嗤帜溉∽畹痛蝺

     、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

      提取公因式步驟:

     、俅_定公因式。

     、诖_定商式

      ③公因式與商式寫成積的形式。

      分解因式注意;

      ①不準(zhǔn)丟字母

     、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)

      ③雙重括號化成單括號

     、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

     、菹嗤蚴綄懗蓛绲男问

     、奘醉椮(fù)號放括號外

     、呃ㄌ杻(nèi)同類項合并。

      通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

    初中數(shù)學(xué)知識點總結(jié)7

      第一章 豐富的圖形世界

      1、幾何圖形

      從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

      2、點、線、面、體

      (1)幾何圖形的組成

      點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

      線:面和面相交的地方是線,分為直線和曲線。

      面:包圍著體的是面,分為平面和曲面。

      體:幾何體也簡稱體。

      (2)點動成線,線動成面,面動成體。

      3、生活中的立體圖形

      生活中的立體圖形

      柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

      正有理數(shù) 整數(shù)

      有理數(shù) 零 有理數(shù)

      負(fù)有理數(shù) 分?jǐn)?shù)

      2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

      3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

      4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

      5、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

      正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0;橄喾磾(shù)的兩個數(shù)的絕對值相等。

      6、有理數(shù)比較大小:正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。

      7、有理數(shù)的運算:

      (1)五種運算:加、減、乘、除、乘方

      多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。

      有理數(shù)加法法則:

      同號兩數(shù)相加,取相同的符號,并把絕對值相加。

      異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

      一個數(shù)同0相加,仍得這個數(shù)。

      互為相反數(shù)的兩個數(shù)相加和為0。

      有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)!

      有理數(shù)乘法法則:

      兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

      任何數(shù)與0相乘,積仍為0。

      有理數(shù)除法法則:

      兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。

      0除以任何非0的數(shù)都得0。

      注意:0不能作除數(shù)。

      有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。

      正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。

      (2)有理數(shù)的運算順序

      先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

      (3)運算律

      加法交換律 加法結(jié)合律

      乘法交換律 乘法結(jié)合律

      乘法對加法的分配律

      8、科學(xué)記數(shù)法

      一般地,一個大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)-1)

      第三章 整式及其加減

      1、代數(shù)式

      用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

      注意:①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;

      ②代數(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;

      ③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。

      ※代數(shù)式的書寫格式:

      ①代數(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;

      ②數(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;

      ③帶分?jǐn)?shù)與字母相乘時,應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫作;

     、軘(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;

     、菰诖鷶(shù)式中出現(xiàn)除法運算時,一般寫成分?jǐn)?shù)的形式,如4÷(a-4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號和括號的雙重作用。

     、拊诒硎竞(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。

      2、整式:單項式和多項式統(tǒng)稱為整式。

     、賳雾検剑憾际菙(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。

      注意:1.單獨的一個數(shù)或一個字母也是單項式;2.單獨一個非零數(shù)的次數(shù)是0;3.當(dāng)單項式的系數(shù)為1或-1時,這個“1”應(yīng)省略不寫,如-ab的系數(shù)是-1,a3b的系數(shù)是1。

     、诙囗検剑簬讉單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。

      3、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

      注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數(shù)也相同。

     、谕愴椗c系數(shù)無關(guān),與字母的排列順序無關(guān);

     、蹘讉常數(shù)項也是同類項。

      4、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

      5、去括號法則

     、俑鶕(jù)去括號法則去括號:

      括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。

      ②根據(jù)分配律去括號:

      括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據(jù)乘法的分配律用+1或-1去乘括號里的每一項以達(dá)到去括號的目的。

      6、添括號法則

      添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。

      7、整式的運算:

      整式的加減法:(1)去括號;(2)合并同類項。

      第四章 基本平面圖形

      2、直線的性質(zhì)

      (1)直線公理:經(jīng)過兩個點有且只有一條直線。(兩點確定一條直線。)

      (2)過一點的直線有無數(shù)條。

      (3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

      3、線段的性質(zhì)

      (1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)

      (2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

      (3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

      4、線段的中點:

      點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。

      5、角:

      有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉(zhuǎn)而成的。

      6、角的表示

      角的表示方法有以下四種:

     、儆脭(shù)字表示單獨的角,如∠1,∠2,∠3等。

     、谟眯懙南ED字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

     、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

     、苡萌齻大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

      注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。

      7、角的度量

      角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

      把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

      把1’的.角60等分,每一份叫做1秒的角,1秒記作“1””。

      1°=60’,1’=60”

      8、角的平分線

      從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

      9、角的性質(zhì)

      (1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

      (2)角的大小可以度量,可以比較,角可以參與運算。

      10、平角和周角:一條射線繞著它的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。

      11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。

      從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。

      12、圓:平面上,一條線段繞著一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

      圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。

      第五章 一元一次方程

      1、方程

      含有未知數(shù)的等式叫做方程。

      2、方程的解

      能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

      3、等式的性質(zhì)

      (1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。

      (2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。

      4、一元一次方程

      只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

      5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.

      6、解一元一次方程的一般步驟:

      (1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1

      第六章 數(shù)據(jù)的收集與整理

      1、普查與抽樣調(diào)查

      為了特定目的對全部考察對象進(jìn)行的全面調(diào)查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

      從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。

      2、扇形統(tǒng)計圖

      扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)

      圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)

      3、頻數(shù)直方圖

      頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

      4、各種統(tǒng)計圖的特點

      條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

      折線統(tǒng)計圖:能清楚地反映事物的變化情況。

      扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

    初中數(shù)學(xué)知識點總結(jié)8

      一、平移變換:

      1、概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

      2、性質(zhì):

      (1)平移前后圖形全等;

     。2)對應(yīng)點連線平行或在同一直線上且相等。

      3、平移的作圖步驟和方法:

     。1)分清題目要求,確定平移的方向和平移的距離。

      (2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點。

     。3)沿一定的方向,按一定的距離平移各個關(guān)健點。

     。4)連接所作的各個關(guān)鍵點,并標(biāo)上相應(yīng)的字母。

     。5)寫出結(jié)論。

      二、旋轉(zhuǎn)變換:

      1、概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動叫做旋轉(zhuǎn)。

      說明:

     。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

      (2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動。

     。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

     。4)旋轉(zhuǎn)過程靜止時,圖形上一個點的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

      2、性質(zhì):

     。1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;

     。2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

     。3)旋轉(zhuǎn)前、后的圖形全等。

      3、旋轉(zhuǎn)作圖的步驟和方法:

     。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

     。2)找出圖形的'關(guān)鍵點;

     。3)將圖形的關(guān)鍵點和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點的對應(yīng)點;

     。4)按原圖形順次連接這些對應(yīng)點,所得到的圖形就是旋轉(zhuǎn)后的圖形。

      說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

      4、常見考法

      (1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

     。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計一些題目。

      誤區(qū)提醒

     。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

      (2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

    初中數(shù)學(xué)知識點總結(jié)9

      常用數(shù)學(xué)公式

      乘法與因式分a2-b2=(a+b)(a-b)

      a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

      三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

      |a-b|≥|a|-|b|-|a|≤a≤|a|

      一元二次方程的解x1=-b+√(b2-4ac)/2ax2=-b-√(b2-4ac)/2a

      根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理

      判別式

      b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根

      b2-4ac

      某些數(shù)列前n項和

      1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

      2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4

      1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

      正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

      余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

      圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py

      直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c"*h

      正棱錐側(cè)面積S=1/2c*h"正棱臺側(cè)面積S=1/2(c+c")h"圓臺側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

      弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

      錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h

      1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等

      5過一點有且只有一條直線和已知直線垂直

      6直線外一點與直線上各點連接的所有線段中,垂線段最短

      7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯角相等14兩直線平行,同旁內(nèi)角互補(bǔ)

      15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

      17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余

      19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等

      22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

      26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等

      28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合

      30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

      32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°

      34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

      35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

      39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

      40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形

      43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

      44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

      45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

      46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

      50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

      52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等

      55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

      56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

      59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個角都是直角61矩形性質(zhì)定理2矩形的對角線相等

      62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

      65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

      68菱形判定定理2對角線互相垂直的平行四邊形是菱形

      69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

      70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

      71定理1關(guān)于中心對稱的兩個圖形是全等的

      72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分73逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

      74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等

      76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

      78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

      79推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

      80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的'基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d

      85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

      86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

      89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

      90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

      91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

      94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

      95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

      97性質(zhì)定理2相似三角形周長的比等于相似比

      98性質(zhì)定理3相似三角形面積的比等于相似比的平方

      99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

      100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

      101圓是定點的距離等于定長的點的集合

      102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等

      105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

      106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

      107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

      108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

      109定理不在同一直線上的三點確定一個圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

      ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

      114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等116定理一條弧所對的圓周角等于它所對的圓心角的一半

      117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

      119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

      121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

      122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

      123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

      126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角127圓的外切四邊形的兩組對邊的和相等

      128弦切角定理弦切角等于它所夾的弧對的圓周角

      129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

      131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

      132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

      133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

      134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

     、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

     、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

     、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139正n邊形的每個內(nèi)角都等于(n-2)×180°/n

      140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長

      143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長計算公式:L=n兀R/180

      145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2

    初中數(shù)學(xué)知識點總結(jié)10

      一、基本知識

      ㈠、數(shù)與代數(shù)A、數(shù)與式:

      1、有理數(shù)

      有理數(shù):

      ①整數(shù)→正整數(shù)/0/負(fù)整數(shù)

     、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

      數(shù)軸:

     、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方

      向為正方向,就得到數(shù)軸。

     、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

     、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

     、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

      絕對值:

      ①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負(fù)數(shù)的

      絕對值是他的相反數(shù)、0的絕對值是0。兩個負(fù)數(shù)比較大小,絕對值大的反而小。

      有理數(shù)的運算:

      加法:

     、偻栂嗉樱∠嗤姆,把絕對值相加。

     、诋愄栂嗉樱^對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

     、垡粋數(shù)與0相加不變。

      減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

      乘法:①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

     、谌魏螖(shù)與0相乘得0。

     、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。

      ②0不能作除數(shù)。

      乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù);旌享樞颍合人愠朔ǎ偎愠顺,最后算加減,有括號要先算括號里的。2、實數(shù)

      無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

      平方根:

     、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

     、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

      ④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

      立方根:

     、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

     、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

      實數(shù):

     、賹崝(shù)分有理數(shù)和無理數(shù)。

     、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。3、代數(shù)式

      代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

      合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。

     、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴。

     、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

      4、整式與分式

      整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

     、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。冪的運算:AM+AN=A(M+N)

     。ˋM)N=AMN

     。ˋ/B)N=AN/BN除法一樣。

      整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作

      為積的因式。

     、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

      公式兩條:平方差公式/完全平方公式

      整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則

      連同他的指數(shù)一起作為商的一個因式。

     、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

      分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。

      分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

      ②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:

      乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等于乘以這個分式的倒數(shù)。

      加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組

      一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

     、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

      解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

      二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

      一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程1)一元二次方程的二次函數(shù)的關(guān)系

      大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了2)一元二次方程的解法

      大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的`一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解(1)配方法

      利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解(2)分解因式法

      提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的

      形式去解(3)公式法

      這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:

      先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

      (2)分解因式法的步驟:

      把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法

      就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c4)韋達(dá)定理

      利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

      也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用5)一元一次方程根的情況

      利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:

      I當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根;II當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根;

      III當(dāng)△B,A+C>B+C在不等式中,如果減去同一個數(shù)(或加上一個負(fù)數(shù)),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負(fù)數(shù),不等號改向;例如:A>B,A*C系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。

     、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時,則經(jīng)124象限;當(dāng)K〉0,B〈0時,則經(jīng)134象限;當(dāng)K〉0,B〉0時,則經(jīng)123象限。

      ④當(dāng)K〉0時,Y的值隨X值的增大而增大,當(dāng)X〈0時,Y的值隨X值的增大而減少。

      ㈡空間與圖形A、圖形的認(rèn)識1、點,線,面

      點,線,面:①圖形是由點,線,面構(gòu)成的。

     、诿媾c面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。

      展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相

      等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

      截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。

      多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形; ⑸刃危孩儆梢粭l弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

      ②圓可以分割成若干個扇形。

      2、角

      線:①線段有兩個端點。

     、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。

      比較長短:①兩點之間的所有連線中,線段最短。

      ②兩點之間線段的長度,叫做這兩點之間的距離。

      角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

      ②一度的1/60是一分,一分的1/60是一秒。

      角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。

     、谝粭l射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角。

      ③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

      平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。

     、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

     、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

     、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

      ③平面內(nèi),過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

      垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

      垂直平分線定理:

      性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。

      定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出

      現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

      性質(zhì)定理:角平分線上的點到該角兩邊的距離相等

      判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形

      性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)判定:1、對角線相等的菱形2、鄰邊相等的矩形

      二、基本定理

      1、過兩點有且只有一條直線2、兩點之間線段最短

      3、同角或等角的補(bǔ)角相等4、同角或等角的余角相等

      5、過一點有且只有一條直線和已知直線垂直

      6、直線外一點與直線上各點連接的所有線段中,垂線段最短

      7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內(nèi)錯角相等,兩直線平行11、同旁內(nèi)角互補(bǔ),兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內(nèi)錯角相等14、兩直線平行,同旁內(nèi)角互補(bǔ)

      15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊

      17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18、推論1直角三角形的兩個銳角互余

      19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21、全等三角形的對應(yīng)邊、對應(yīng)角相等

      22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

      26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27、定理1在角的平分線上的點到這個角的兩邊的距離相等

      28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合

      30、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

      32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個角都等于60°

      34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35、推論1三個角都相等的三角形是等邊三角形

      36、推論2有一個角等于60°的等腰三角形是等邊三角形

      37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線等于斜邊上的一半

      5

      39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

      40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1關(guān)于某條直線對稱的兩個圖形是全等形

      43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

      44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

      47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形48、定理四邊形的內(nèi)角和等于360°49、四邊形的外角和等于360°

      50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°

      52、平行四邊形性質(zhì)定理1平行四邊形的對角相等53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等54、推論夾在兩條平行線間的平行線段相等

      55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

      56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質(zhì)定理1矩形的四個角都是直角61、矩形性質(zhì)定理2矩形的對角線相等

      62、矩形判定定理1有三個角是直角的四邊形是矩形63、矩形判定定理2對角線相等的平行四邊形是矩形64、菱形性質(zhì)定理1菱形的四條邊都相等

      65、菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積=對角線乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形

      68、菱形判定定理2對角線互相垂直的平行四邊形是菱形

      69、正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

      70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71、定理1關(guān)于中心對稱的兩個圖形是全等的

      72、定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

      73、逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75、等腰梯形的兩條對角線相等

      76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77、對角線相等的梯形是等腰梯形

      78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79、推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

      80、推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

      82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),

      那么(a+c++m)/(b+d++n)=a/b

      86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

      88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

      89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

      96、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97、性質(zhì)定理2相似三角形周長的比等于相似比

      98、性質(zhì)定理3相似三角形面積的比等于相似比的平方

      99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點的距離等于定長的點的集合

      102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103、圓的外部可以看作是圓心的距離大于半徑的點的集合104、同圓或等圓的半徑相等

      105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

      108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109、定理不在同一直線上的三點確定一個圓。

      110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1

     、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

     、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱中心的中心對稱圖形

      114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

      116、定理一條弧所對的圓周角等于它所對的圓心角的一半

      117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

      119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120、定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

      122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑

      124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

      126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對邊的和相等

      128、弦切角定理弦切角等于它所夾的弧對的圓周角

      129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130、相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

      131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

      132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134、如果兩個圓相切,那么切點一定在連心線上

      135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)

     、軆蓤A內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)136、定理相交兩圓的連心線垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):

     、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

      ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138、定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

      140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142、正三角形面積√3a/4a表示邊長

      143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

      144、弧長計算公式:L=n兀R/180

      145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

      一、常用數(shù)學(xué)公式

      公式分類公式表達(dá)式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

      三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|

      |a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

      一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

      根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式

      b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根

      b2-4ac歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。8、面積法

      平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

      用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法

      在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。10、客觀性題的解題方法

      選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

      填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

     。1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進(jìn)行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

      (2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當(dāng)遇到定量命題時,常用此法。

     。3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。

     。4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。

     。5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

      (6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。

    初中數(shù)學(xué)知識點總結(jié)11

      動點與函數(shù)圖象問題常見的四種類型:

      1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      2、四邊形中的動點問題:動點沿四邊形的邊運動,判斷函數(shù)圖象.

      3、圓中的動點問題:動點沿圓周運動,判斷函數(shù)圖象.

      4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,判斷函數(shù)圖象.

      圖形運動與函數(shù)圖象問題常見的三種類型:

      1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,進(jìn)行分段,判斷函數(shù)圖象.

      2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,判斷函數(shù)圖象.

      3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,判斷函數(shù)圖象.

      動點問題常見的四種類型:

      1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

      2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

      3、圓中的動點問題:動點沿圓周運動,探究構(gòu)成的新圖形的邊角等關(guān)系.

      4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.

      總結(jié)反思:

      本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的.判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

      解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認(rèn)識,發(fā)掘“動”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的

      解答函數(shù)的圖象問題一般遵循的步驟:

      1、根據(jù)自變量的取值范圍對函數(shù)進(jìn)行分段.

      2、求出每段的解析式.

      3、由每段的解析式確定每段圖象的形狀.

      對于用圖象描述分段函數(shù)的實際問題,要抓住以下幾點:

      1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

      2、自變量變化函數(shù)值也變化的增減變化情況.

      3、函數(shù)圖象的最低點和最高點.

    初中數(shù)學(xué)知識點總結(jié)12

      一、圓

      1、圓的有關(guān)性質(zhì)

      在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

      由圓的意義可知:

      圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

      就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。

      圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

      圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

      圓心相同,半徑不相等的兩個圓叫同心圓。

      能夠重合的兩個圓叫等圓。

      同圓或等圓的半徑相等。

      在同圓或等圓中,能夠互相重合的弧叫等弧。

      二、過三點的圓

      l、過三點的圓

      過三點的圓的作法:利用中垂線找圓心

      定理不在同一直線上的三個點確定一個圓。

      經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。

      2、反證法

      反證法的三個步驟:

     、偌僭O(shè)命題的結(jié)論不成立;

     、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

      ③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。

      例如:求證三角形中最多只有一個角是鈍角。

      證明:設(shè)有兩個以上是鈍角

      則兩個鈍角之和>180°

      與三角形內(nèi)角和等于180°矛盾。

      ∴不可能有二個以上是鈍角。

      即最多只能有一個是鈍角。

      三、垂直于弦的直徑

      圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

      垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

      推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

      弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

      平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

      推理2:圓兩條平行弦所夾的弧相等。

      四、圓心角、弧、弦、弦心距之間的關(guān)系

      圓是以圓心為對稱中心的中心對稱圖形。

      實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。

      頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

      定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

      推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

      五、圓周角

      頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

      推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

      推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

      推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

      由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

      相關(guān)的角:

      1、對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。

      2、互為補(bǔ)角:如果兩個角的和是一個平角,這兩個角做互為補(bǔ)角。

      3、互為余角:如果兩個角的和是一個直角,這兩個角叫做互為余角。

      4、鄰補(bǔ)角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補(bǔ)角。

      注意:互余、互補(bǔ)是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補(bǔ)角則要求兩個角有特殊的位置關(guān)系。

      角的性質(zhì)

      1、對頂角相等。

      2、同角或等角的余角相等。

      3、同角或等角的補(bǔ)角相等。

      其實角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。

      角的靜態(tài)定義

      具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

      角的動態(tài)定義

      一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

      角的符號

      角的符號:∠

      角的種類

      在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

      銳角:大于0°,小于90°的角叫做銳角。

      直角:等于90°的角叫做直角。

      鈍角:大于90°而小于180°的角叫做鈍角。

      平角:等于180°的角叫做平角。

      優(yōu)角:大于180°小于360°叫優(yōu)角。

      劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

      角周角:等于360°的角叫做周角。

      負(fù)角:按照順時針方向旋轉(zhuǎn)而成的角叫做負(fù)角。

      正角:逆時針旋轉(zhuǎn)的角為正角。

      0角:等于零度的角。

      特殊角

      余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的`余角相等,等角的補(bǔ)角相等。

      對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角。互為對頂角的兩個角相等。

      鄰補(bǔ)角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個角,互為鄰補(bǔ)角。

      內(nèi)錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的

      內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對角叫做內(nèi)錯角(alternate interior angle )。如:∠1和∠6,∠2和∠5

      同旁內(nèi)角:兩個角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6

      同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

      外錯角:兩條直線被第三條直線所截,構(gòu)成了八個角。如果兩個角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。

      同旁外角:兩個角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7

      終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:

      A{bb=k_360+a,k∈Z}表示角度制;

      B{bb=2kπ+a,k∈Z}表示弧度制

     、僦本和圓無公共點,稱相離。 AB與圓O相離,d>r。

     、谥本和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

     、壑本和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

      平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

      1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程

      如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

      如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

      如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

      2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

      當(dāng)x=-C/Ax2時,直線與圓相離;

    初中數(shù)學(xué)知識點總結(jié)13

      動點與函數(shù)圖象問題常見的四種類型:

      1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      2、四邊形中的動點問題:動點沿四邊形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      3、圓中的動點問題:動點沿圓周運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      圖形運動與函數(shù)圖象問題常見的三種類型:

      1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

      2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

      3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

      動點問題常見的四種類型:

      1、三角形中的動點問題:動點沿三角形的`邊運動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

      2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

      3、圓中的動點問題:動點沿圓周運動,探究構(gòu)成的新圖形的邊角等關(guān)系.

      4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.

      總結(jié)反思:

      本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

      解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認(rèn)識,發(fā)掘“動”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的

      解答函數(shù)的圖象問題一般遵循的步驟:

      1、根據(jù)自變量的取值范圍對函數(shù)進(jìn)行分段.

      2、求出每段的解析式.

      3、由每段的解析式確定每段圖象的形狀.

      對于用圖象描述分段函數(shù)的實際問題,要抓住以下幾點:

      1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

      2、自變量變化函數(shù)值也變化的增減變化情況.

      3、函數(shù)圖象的最低點和最高點.

    初中數(shù)學(xué)知識點總結(jié)14

      代數(shù)部分:有理數(shù)、無理數(shù)、實數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))

      幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

      1、實數(shù)的分類

      有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:—3,0.231,0.737373......

      無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,—,0.1010010001......(兩個1之間依次多1個0)。

      實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。

      2、無理數(shù)

      在理解無理數(shù)時,要抓住"無限不循環(huán)"這一時之,它包含兩層意思:一是無限小數(shù);二是不循環(huán)。二者缺一不可。歸納起來有四類:

     。1)開方開不盡的數(shù),如等;

     。2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

     。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001......等;

     。4)某些三角函數(shù),如sin60o等。

      注意:判斷一個實數(shù)的屬性(如有理數(shù)、無理數(shù)),應(yīng)遵循:一化簡,二辨析,三判斷。要注意:"神似"或"形似"都不能作為判斷的標(biāo)準(zhǔn)。

      3、非負(fù)數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)

      常見的非負(fù)數(shù)有:

      性質(zhì):若干個非負(fù)數(shù)的和為0,則每個非負(fù)擔(dān)數(shù)均為0。

      4、數(shù)軸:規(guī)定了原點、正方向和單位長度的`直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

      解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。

     、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸("三要素")。

      ②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

     、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。

      作用:A、直觀地比較實數(shù)的大;B、明確體現(xiàn)絕對值意義;C、建立點與實數(shù)的一一對應(yīng)關(guān)系。

      5、相反數(shù)

      實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

      即:(1)實數(shù)的相反數(shù)是。

    初中數(shù)學(xué)知識點總結(jié)15

      知識點總結(jié)

      1.定義:兩組對邊分別平行的四邊形叫平行四邊形

      2.平行四邊形的性質(zhì)

     。1)平行四邊形的對邊平行且相等;

     。2)平行四邊形的鄰角互補(bǔ),對角相等;

      (3)平行四邊形的對角線互相平分;

      3.平行四邊形的判定

      平行四邊形是幾何中一個重要內(nèi)容,如何根據(jù)平行四邊形的`性質(zhì),判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

      第一類:與四邊形的對邊有關(guān)

      (1)兩組對邊分別平行的四邊形是平行四邊形;

     。2)兩組對邊分別相等的四邊形是平行四邊形;

     。3)一組對邊平行且相等的四邊形是平行四邊形;

      第二類:與四邊形的對角有關(guān)

     。4)兩組對角分別相等的四邊形是平行四邊形;

      第三類:與四邊形的對角線有關(guān)

     。5)對角線互相平分的四邊形是平行四邊形

      常見考法

     。1)利用平行四邊形的性質(zhì),求角度、線段長、周長;

      (2)求平行四邊形某邊的取值范圍;

      (3)考查一些綜合計算問題;

      (4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;

      (5)利用判定定理證明四邊形是平行四邊形。

      誤區(qū)提醒

     。1)平行四邊形的性質(zhì)較多,易把對角線互相平分,錯記成對角線相等;

     。2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個等腰梯形。

    【初中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

    初中數(shù)學(xué)的知識點總結(jié)12-12

    初中數(shù)學(xué)《整式》知識點總結(jié)10-21

    初中數(shù)學(xué)畢業(yè)知識點總結(jié)07-06

    數(shù)學(xué)初中知識點總結(jié)04-25

    初中數(shù)學(xué)必學(xué)的知識點總結(jié)04-24

    初中數(shù)學(xué)函數(shù)知識點總結(jié)11-24

    初中數(shù)學(xué)圓的知識點總結(jié)12-05

    初中數(shù)學(xué)知識點總結(jié)11-03

    初中數(shù)學(xué)幾何知識點總結(jié)03-01