- 相關(guān)推薦
高中數(shù)學知識點總結(jié)最新
總結(jié)是事后對某一階段的學習或工作情況作加以回顧檢查并分析評價的書面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們一起認真地寫一份總結(jié)吧?偨Y(jié)怎么寫才是正確的呢?以下是小編收集整理的高中數(shù)學知識點總結(jié),歡迎閱讀與收藏。
高中數(shù)學知識點總結(jié) 1
1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習中,首先應(yīng)從解決平行與垂直的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2. 判定兩個平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點;
(2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
3.兩個平面平行的主要性質(zhì):
(1)由定義知:兩平行平面沒有公共點。
(2)由定義推得:兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面。
(3)兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。
(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面。
(5)夾在兩個平行平面間的平行線段相等。
(6)經(jīng)過平面外一點只有一個平面和已知平面平行。
以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為性質(zhì)定理,但在解題過程中均可直接作為性質(zhì)定理引用。
數(shù)學必修單元知識點
第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用。這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點
第五,概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。
第七,解析幾何。是高考的難點,運算量大,一般含參數(shù)。
高中數(shù)學知識點梳理
函數(shù)與導(dǎo)數(shù)
第一、求函數(shù)定義域題忽視細節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。
在求一般函數(shù)定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時千萬別忘了這一點。復(fù)合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。
第二、帶絕對值的函數(shù)單調(diào)性判斷錯誤帶絕對值的函數(shù)實質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對各個段上的'單調(diào)區(qū)間進行整合;第二,畫出這個分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)能夠進行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時,要第一時間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。
對于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
第三、求函數(shù)奇偶性的常見錯誤求函數(shù)奇偶性類的題最常見的錯誤有求錯函數(shù)定義域或忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當?shù)鹊。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷。
在用定義進行判斷時,要注意自變量在定義域區(qū)間內(nèi)的任意性。
第四、抽象函數(shù)推理不嚴謹很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同特征而設(shè)計的,在解答此類問題時,考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問題的突破口。
抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。
第五、函數(shù)零點定理使用不當若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)0。那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數(shù)的零點定理,分為變號零點和不變號零點,而對于不變號零點,函數(shù)的零點定理是無能為力的,在解決函數(shù)的零點時,考生需格外注意這類問題。
第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。
因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。
第七、混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系一個函數(shù)在某個區(qū)間上是增函數(shù)的這類題型,如果考生認為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,很容易就會出錯。
解答函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時一定要注意,一個函數(shù)的導(dǎo)函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
第八、導(dǎo)數(shù)與極值關(guān)系不清考生在使用導(dǎo)數(shù)求函數(shù)極值類問題時,容易出現(xiàn)的錯誤就是求出使導(dǎo)函數(shù)等于0的點,卻沒有對這些點左右兩側(cè)導(dǎo)函數(shù)的符號進行判斷,誤以為使導(dǎo)函數(shù)等于0的點就是函數(shù)的極值點,往往就會出錯,出錯原因就是考生對導(dǎo)數(shù)與極值關(guān)系沒搞清楚。
高中數(shù)學知識點總結(jié) 2
1、必修課程由5個模塊組成:
必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對數(shù)函數(shù))
必修2:立體幾何初步、平面解析幾何初步。
必修3:算法初步、統(tǒng)計、概率。
必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。
必修5:解三角形、數(shù)列、不等式。
以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。
選修課程分為4個系列:
系列1:2個模塊
選修1—1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。
選修1—2:統(tǒng)計案例、推理與證明、數(shù)系的擴充與復(fù)數(shù)、框圖
系列2:3個模塊
選修2—1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何
選修2—2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴充與復(fù)數(shù)
選修2—3:計數(shù)原理、隨機變量及其分布列、統(tǒng)計案例
選修4—1:幾何證明選講
選修4—4:坐標系與參數(shù)方程
選修4—5:不等式選講
2、重難點及其考點:
重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)
難點:函數(shù),圓錐曲線
高考相關(guān)考點:
1、集合與邏輯:集合的邏輯與運算(一般出現(xiàn)在高考卷的第一道選擇題)、簡易邏輯、充要條件
2、函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用
3、數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項、求和
4、三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用
5、平面向量:初等運算、坐標運算、數(shù)量積及其應(yīng)用
6、不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用
7、直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系
8、圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用
9、直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量
10、排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用
11、概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布
12、導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用
13、復(fù)數(shù):復(fù)數(shù)的概念與運算
高中數(shù)學學習要注意的方法
1、用心感受數(shù)學,欣賞數(shù)學,掌握數(shù)學思想。有位數(shù)學家曾說過:數(shù)學是用最小的空間集中了的理想。
2、要重視數(shù)學概念的理解。高一數(shù)學與初中數(shù)學的區(qū)別是概念多并且較抽象,學起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達方式。例如,為什么函數(shù)y=f(x)與y=f—1(x)的圖象關(guān)于直線y=x對稱,而y=f(x)與x=f—1(y)卻有相同的圖象;又如,為什么當f(x—1)=f(1—x)時,函數(shù)y=f(x)的圖象關(guān)于y軸對稱,而y=f(x—1)與y=f(1—x)的圖象卻關(guān)于直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關(guān)系的區(qū)別,兩者很容易混淆。
3、對數(shù)學學習應(yīng)抱著二個詞――“嚴謹,創(chuàng)新”,所謂嚴謹,就是在平時訓(xùn)練的時候,不能一絲馬虎,是對就是對,錯了就一定要承認,要找原因,要改正,萬不可以抱著“好像是對的”的心態(tài),蒙混過關(guān)。至于創(chuàng)新呢,要求就高一點了,要求在你會解決此問題的情況下,你還會不會用另一種更簡單,更有效的方法,這就需要扎實的基本功。平時,我們看到一些人,做題時從不用常規(guī)方法,總愛自己創(chuàng)造一些方法以“偏方”解題,雖然有時候也能讓他撞上一些好的方法,但我認為是不可取的。因為你首先必須學會用常規(guī)的方法,在此基礎(chǔ)上你才能創(chuàng)新,你的創(chuàng)新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現(xiàn)。當然我們要有創(chuàng)新意識,但是,創(chuàng)新是有條件的,必須有扎實的基礎(chǔ),因此我想勸一下那些基礎(chǔ)不牢,而平時總愛用“偏方”的同學們,該是清醒一下的時候了,千萬不要繼續(xù)鉆那可憐的牛角尖!
4、建立良好的學習數(shù)學習慣,習慣是經(jīng)過重復(fù)練習而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學習數(shù)學習慣,會使自己學習感到有序而輕松。高中數(shù)學的良好習慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養(yǎng)自己再學習能力。
5、多聽、多作、多想、多問:此“四多”乃培養(yǎng)數(shù)學能力的要訣,“聽”就是在“學”,作是“練習”(作課本上的習題或其它問題),也就是把您所學的,應(yīng)用到解決問題上!奥牎迸c“作”難免會碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來就要“問”――問同學、問老師或參考書,務(wù)必將疑難解決為止。這就是所謂的學問:既學又問。
6、要有毅力、要有恒心:基本上要有一個認識:數(shù)學能力乃是長期努力累積的結(jié)果,而不是一朝一夕之功所能達到的。您可能花一天或一個晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時對答如流而獲高分,也有可能花了一兩個禮拜的時間拼命學數(shù)學,但到頭來數(shù)學可能還考不好,這時候您可不能氣餒,也不必為花掉的時間惋惜。
高中數(shù)學復(fù)習的五大要點分析
一、端正態(tài)度,切忌浮躁,忌急于求成
在第一輪復(fù)習的過程中,心浮氣躁是一個非常普遍的現(xiàn)象。主要表現(xiàn)為平時復(fù)習覺得沒有問題,題目也能做,但是到了考試時就是拿不了高分!這主要是因為:
(1)對復(fù)習的知識點缺乏系統(tǒng)的理解,解題時缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習著重對基礎(chǔ)知識點的挖掘,數(shù)學老師一定都會反復(fù)強調(diào)基礎(chǔ)的重要性。如果不重視對知識點的系統(tǒng)化分析,不能構(gòu)成一個整體的知識網(wǎng)絡(luò)構(gòu)架,自然在解題時就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。
。2)復(fù)習的時候心不靜。心不靜就會導(dǎo)致思維不清晰,而思維不清晰就會促使復(fù)習沒有效率。建議大家在開始一個學科的復(fù)習之前,先靜下心來認真想一想接下來需要復(fù)習哪一塊兒,需要做多少事情,然后認真去做,同時需要很高的注意力,只有這樣才會有很好的效果。
(3)在第一輪復(fù)習階段,學習的`重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習上來。
因此,建議廣大同學在一輪復(fù)習的時候千萬不要急于求成,一定要靜下心來,認真的揣摩每個知識點,弄清每一個原理。只有這樣,一輪復(fù)習才能顯出成效。
二、注重教材、注重基礎(chǔ),忌盲目做題
要把書本中的常規(guī)題型做好,所謂做好就是要用最少的時間把題目做對。部分同學在第一輪復(fù)習時對基礎(chǔ)題不予以足夠的重視,認為題目看上去會做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯的地方錯了”,最終把原因簡單的歸結(jié)為粗心,從而忽視了對基本概念的掌握,對基本結(jié)論和公式的記憶及基本計算的訓(xùn)練和常規(guī)方法的積累,造成了實際成績與心理感覺的偏差。
可見,數(shù)學的基本概念、定義、公式,數(shù)學知識點的聯(lián)系,基本的數(shù)學解題思路與方法,是第一輪復(fù)習的重中之重。不妨以既是重點也是難點的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對稱性等性質(zhì),學會利用圖像即數(shù)形結(jié)合。
每個同學在數(shù)學學習上遇到的問題有共同點,更有不同點。在復(fù)習課上,老師只能針對性去解決共同點,而同學們自己的個別問題則需要通過自己的思考,與同學們的討論,并向老師提問來解決問題,我們提倡同學多問老師,要敢于問。每個同學必須了解自己掌握了什么,還有哪些問題沒有解決,要明確只有把漏洞一一補上才能提高。復(fù)習的過程,實質(zhì)就是解決問題的過程,問題解決了,復(fù)習的效果就實現(xiàn)了。同時,也請同學們注意:在你問問題之前先經(jīng)過自己思考,不要把不經(jīng)過思考的問題就直接去問,因為這并不能起到更大作用。
高三的復(fù)習一定是有計劃、有目標的,所以千萬不要盲目做題。第一輪復(fù)習非常具有針對性,對于所有知識點的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡單做題是達不到一輪復(fù)習應(yīng)該具有的效果。而且盲目做題沒有針對性,更不會有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點運用方法的總結(jié)。
三、在平時做題中要養(yǎng)成良好的解題習慣,忌不思
1、樹立信心,養(yǎng)成良好的運算習慣。部分同學平時學習過程中自信心不足,做作業(yè)時免不了互相對答案,也不認真找出錯誤原因并加以改正!皶粚Α笔歉呷龜(shù)學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這就是一種非常不好的習慣,必須在第一輪復(fù)習中逐步克服,否則,后患無窮。可結(jié)合平時解題中存在的具體問題,逐題找出原因,看其是行為習慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位同學必備的,以便以后查詢。
2、做好解題后的開拓引申,培養(yǎng)一題多解和舉一反三的能力。解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開拓引申,即一道數(shù)學題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。
考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開拓引申,引申出新題和新解法,有利于培養(yǎng)同學們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:
(1)把題目條件開拓引申。
、侔烟厥鈼l件一般化;
②把一般條件特殊化;
③把特殊條件和一般條件交替變化。
。2)把題目結(jié)論開拓引申。
。3)把題型開拓引申,同一個題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。
3、提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡捷;二是對常規(guī)解法的掌握是否達到高度的熟練程度。
四、學會總結(jié)、歸納,訓(xùn)練到位,忌題量不足
我在暑期上課的時候發(fā)現(xiàn),很多同學都是一看到題目就開始做題,這也是一輪復(fù)習應(yīng)該避免的地方。做題如果不注重思路的分析,知識點的運用,效果可想而知。因此建議同學們在做題前要把老師上課時復(fù)習的知識再回顧一下,梳理知識體系,回顧各個知識點,對所學的知識結(jié)構(gòu)要有一個完整清楚的認識,認真分析題目考查的知識,思想,以及方法,還要學會總結(jié)歸納不留下任何知識的盲點,在一輪復(fù)習中要注意對各個知識點的細化。這個過程不需要很長的時間,而且到了后續(xù)階段會越來越熟練。因此,養(yǎng)成良好的做題習慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。
實踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習下不僅可以更扎實的掌握知識點,還可以更深入的了解知識點,避免出現(xiàn)“會而不對、對而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分數(shù)的一個直接反映,尤其是數(shù)學試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認真細致的推敲才會有較大的提升。有句話說的好,“量變導(dǎo)致質(zhì)變”,因此,同學們在每章復(fù)習的時候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對這一章知識點的熟練運用。
但是,大量訓(xùn)練絕對不是題海戰(zhàn)術(shù)。因為針對每章節(jié)做題都有目標,同時做題訓(xùn)練都需要不斷的總結(jié),既要橫向總結(jié),也要縱向深入。只要在每章節(jié)做題做到一定程度的時候都能感覺到這一章的知識點有哪些,典型題型有哪些,方法和技巧有哪些,換句話說,如果隨機抽取一些近幾年關(guān)于這一章的高考題都會做,那我認為就可以了。
五、解析幾何
這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。
六、壓軸題
同學們在最后的備考復(fù)習中,還應(yīng)該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高考數(shù)學直線方程知識點:什么是直線方程
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度?梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
高中數(shù)學知識點總結(jié) 3
集合的分類:
。1)按元素屬性分類,如點集,數(shù)集。
。2)按元素的個數(shù)多少,分為有/無限集
關(guān)于集合的概念:
。1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
。2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
。3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標準。
集合可以根據(jù)它含有的元素的個數(shù)分為兩類:
含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
非負整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。
在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_。
整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。
有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分數(shù)的統(tǒng)稱,一切有理數(shù)都可以化成分數(shù)的形式。)
實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分數(shù)。數(shù)學上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應(yīng)的數(shù)。)
1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}。
有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。
例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。
無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。
2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。
例如:正偶數(shù)構(gòu)成的.集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”
而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。
一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
高中數(shù)學知識點總結(jié) 4
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動點的軌跡方程的基本步驟。
1、建立適當?shù)淖鴺讼,設(shè)出動點M的坐標;
2、寫出點M的集合;
3、列出方程=0;
4、化簡方程為最簡形式;
5、檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的.定義寫出方程,這種求軌跡方程的方法叫做定義法。
3、相關(guān)點法:用動點Q的坐標x,y表示相關(guān)點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
4、參數(shù)法:當動點坐標x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動點軌跡方程的一般步驟:
、俳ㄏ怠⑦m當?shù)淖鴺讼担?/p>
②設(shè)點——設(shè)軌跡上的任一點P(x,y);
、哿惺健谐鰟狱cp所滿足的關(guān)系式;
、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
高中數(shù)學知識點總結(jié) 5
1.定義法:
判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可.
2.轉(zhuǎn)換法:
當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷.
3.集合法
在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應(yīng)的.集合分別為A、B,則:
若A∩B,則p是q的充分條件.
若A∪B,則p是q的必要條件.
若A=B,則p是q的充要條件.
若A∈B,且B∈A,則p是q的既不充分也不必要條件.
高中數(shù)學知識點總結(jié) 6
一、直線與方程
。1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
。2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即ktan。斜率反映直線與軸的傾斜程度。當0,90時,k0;當90y2y1x2x1,180時,k0;當90時,k不存在。
②過兩點的直線的斜率公式:k(x1x2)
注意下面四點:
(1)當x1x2時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
、冱c斜式:yy1k(xx1)直線斜率k,且過點x1,y1注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。
、谛苯厥剑簓kxb,直線斜率為k,直線在y軸上的截距為b③兩點式:
yy1y2y1xyxx1x2x1(x1x2,y1y2)直線兩點x1,y1,x2,y2
、芙鼐厥剑
ab其中直線l與x軸交于點(a,0),與y軸交于點(0,b),即l與x軸、y軸的截距分別為a,b。
1
、菀话闶剑
AxByC0(A,B不全為0)
注意:○1各式的適用范圍○2特殊的方程如:
平行于x軸的直線:yb(b為常數(shù));平行于y軸的直線:(5)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系(二)過定點的直線系
()斜率為k的直線系:yy0kxx0,直線過定點x0,y0;()過兩條直線l1:A1xB1yC10,l2xa(a為常數(shù));
平行于已知直線A0xB0yC00(A0,B0是不全為0的常數(shù))的直線系:A0xB0yC0(C為常數(shù))
:A2xB2yC20的交點的直線系方程為
A1xB1yC1A2xB2yC20((6)兩直線平行與垂直
當l1:yk1xb1,l2:yk2xb2時,
為參數(shù)),其中直線l2不在直線系中。
l1//l2k1k2,b1b2;l1l2k1k21
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
。7)兩條直線的交點
l1:A1xB1yC10l2:A2xB2yC20相交
AxB1yC10交點坐標即方程組1的一組解。
AxByC0222方程組無解l1//l2;方程組有無數(shù)解l1與l2重合
。8)兩點間距離公式:設(shè)A(x1,y1),B是平面直角坐標系中的兩個點,(x2,y2)則|AB|(x2x1)(y2y1)
。9)點到直線距離公式:一點Px0,y0到直線l1:AxByC0的距離dAx0By0C
AB22(10)兩平行直線距離公式
在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解。
二、圓的方程
1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
。1)標準方程xayb22r,圓心a,b,半徑為r;
。2)一般方程x當D22yDxEyF0
D222E24F0時,方程表示圓,此時圓心為2,1E,半徑為r22D2E24F
當DE4F0時,表示一個點;當DE4F0時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:
22(1)設(shè)直線l:AxByC0,圓C:xaybr2,圓心Ca,b到l的距離為dAaBbC,則有
2222ABdrl與C相離;drl與C相切;drl與C相交
。2)設(shè)直線l:AxByC0,圓C:xaybr,先將方程聯(lián)立消元,得到一個一元二次方程之后,令
222其中的判別式為,則有
0l與C相離;0l與C相切;0l與C相交
注:如果圓心的位置在原點,可使用公式xx0yy0r去解直線與圓相切的問題,其中x0,y0表示切點坐標,r表示
2半徑。
(3)過圓上一點的切線方程:
、賵Ax2+y2=r2,圓上一點為(x0,y0),則過此點的切線方程為xx0yy0r(課本命題).
②圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2(課本命題的推廣).4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。設(shè)圓C1:xa1yb1r2,C2:xa22222yb222R
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。當dRr時兩圓外離,此時有公切線四條;
當dRr時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;當RrdRr時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當dRr時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;當dRr時,兩圓內(nèi)含;當d三、立體幾何初步
0時,為同心圓。
"(2)特殊幾何體表面積公式(c為底面周長,h為高,h為斜高,l為母線)
S直棱柱側(cè)面積S正棱臺側(cè)面積12chS圓柱側(cè)2rhS正棱錐側(cè)面積12ch"S圓錐側(cè)面積rl
(c1c2)h"S圓臺側(cè)面積(rR)l
S圓柱表2rrlS圓錐表rrlS圓臺表r2rlRlR2
(3)柱體、錐體、臺體的體積公式
V柱ShV圓柱Sh211rhV錐ShV圓錐r2h
V臺13(S"SSS)hV圓臺"133(S"SSS)h2
"13(rrRR)h
22(4)球體的表面積和體積公式:V球=4R3;S球面=4R4、空間點、直線、平面的位置關(guān)系(1)平面
、倨矫娴母拍睿篈.描述性說明;B.平面是無限伸展的;
②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個銳角內(nèi));
也可以用兩個相對頂點的字母來表示,如平面BC。
、埸c與平面的關(guān)系:點A在平面內(nèi),記作A;點A不在平面內(nèi),記作A
點與直線的關(guān)系:點A的直線l上,記作:A∈l;點A在直線l外,記作Al;直線與平面的關(guān)系:直線l在平面α內(nèi),記作lα;直線l不在平面α內(nèi),記作lα。
。2)公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。(即直線在平面內(nèi),或者平面經(jīng)過直線)應(yīng)用:檢驗桌面是否平;判斷直線是否在平面內(nèi)用符號語言表示公理1:Al,Bl,A,Bl(3)公理2:經(jīng)過不在同一條直線上的三點,有且只有一個平面。
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)
。4)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線符號:平面α和β相交,交線是a,記作α∩β=a。符號語言:PABABl,Pl
公理3的作用:①它是判定兩個平面相交的方法。②它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點。③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。(5)公理4:平行于同一條直線的兩條直線互相平行(6)空間直線與直線之間的位置關(guān)系
、佼惷嬷本定義:不同在任何一個平面內(nèi)的.兩條直線②異面直線性質(zhì):既不平行,又不相交。
③異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線
、墚惷嬷本所成角:直線a、b是異面直線,經(jīng)過空間任意一點O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。說明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理(2)在異面直線所成角定義中,空間一點O是任取的,而和點O的位置無關(guān)。②求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。B、證明作
出的角即為所求角C、利用三角形來求角
。7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)有無數(shù)個公共點.
三種位置關(guān)系的符號表示:aαa∩α=Aa∥α
。9)平面與平面之間的位置關(guān)系:平行沒有公共點;α∥β
相交有一條公共直線。α∩β=b
5、空間中的平行問題
。1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)兩個平面平行的判定定理
。1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行(線面平行→面面平行),(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。(線線平行→面面平行),(3)垂直于同一條直線的兩個平面平行,
兩個平面平行的性質(zhì)定理
。1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)7、空間中的垂直問題
。1)線線、面面、線面垂直的定義
、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。(2)垂直關(guān)系的判定和性質(zhì)定理①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。9、空間角問題
。1)直線與直線所成的角
、賰善叫兄本所成的角:規(guī)定為0。
、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線a,條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。(2)直線和平面所成的角
、倨矫娴钠叫芯與平面所成的角:規(guī)定為0。②平面的垂線與平面所成的角:規(guī)定為90。
、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,
在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角.....的平面角。
、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼。
兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角7、空間直角坐標系
(1)定義:如圖,OBCDDABC是單位正方體.以A為原點,
分別以O(shè)D,OA,OB的方向為正方向,建立三條數(shù)軸x軸.y軸.z軸。
這時建立了一個空間直角坐標系Oxyz.
1)O叫做坐標原點2)x軸,y軸,z軸叫做坐標軸.3)過每兩個坐標軸的平面叫做坐標面。
。2)右手表示法:令右手大拇指、食指和中指相互垂直時,可能形成的位置。大拇指指向為x軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。
。3)任意點坐標表示:空間一點M的坐標可以用有序?qū)崝?shù)組(x,y,z)來表示,有序?qū)崝?shù)組(x,y,z)叫做點M在此空間直角坐標系中的坐標,記作M(x,y,z)(x叫做點M的橫坐標,y叫做點M的縱坐標,z叫做點M的豎坐標)(4)空間兩點距離坐標公式:d
222(x2x1)(y2y1)(z2z1)
高中數(shù)學知識點總結(jié) 7
(1)《集合》
1)集合概念不定義,屬性相同來相聚;內(nèi)有子交并補集,運算結(jié)果是集合。
2)集合元素三特征,互異無序確定性;集合元素盡相同,兩個集合才相等。
3)書寫規(guī)范符號化,表示列舉描述法;描述法中花括號,對象xy須看清。
4)數(shù)集點集須留意,點集本是實數(shù)對;元素集合講屬于,集合之間談包含。
5)0和空集不相同,正確區(qū)分才成功;運算如果有難處,文氏數(shù)軸來相助。
(2)《常用邏輯用語》
1)真假能判是命題,條件結(jié)論很清晰;命題形式有四種,分成兩雙同真假。
2)若p則q真命題,p和q充分條件;q是p必要條件,原逆皆真稱充要。
3)判斷條件有三法,舉出反例定義法;;由小推大集合法,逆否命題等價法。
4)邏輯連詞或且非,或命題一真即真;且命題一假即假,非命題真假相反。
5)且命題的否定式,否定式的或命題;或命題的否定式,否定式的且命題。
6)量詞一般有兩個,全稱量詞所有的;存在量詞有一個,全稱特稱兩命題。
6)全稱命題否定式,特稱命題肯定式;含有量詞否定式,改寫量詞否結(jié)論。
(3)《函數(shù)概念》
1)函數(shù)結(jié)構(gòu)三要素,值域法則定義域;函數(shù)形式有三法,列表圖像解析法。
2)特殊函數(shù)有三種,分段組合和復(fù)合;定義域的'要求多,分式分母不為0。
3)偶次方根須非負,0的次方要為正;底數(shù)非1為正數(shù),零和負數(shù)無對數(shù)。
4)正切函數(shù)腳不直,數(shù)列序號正整數(shù);多個函數(shù)求交集,實際意義須滿足。
5)函數(shù)值域的求法,配方圖像定義法;部分整體觀察法,換元代入單調(diào)法。
6)分離常數(shù)判別式,均值定理不等法;怎樣去求解析式,題目?純尚允健
7)抽象函數(shù)解析式,代入換元配湊法,方程思想消元法;指定類型解析式
8)運用待定系數(shù)法。性質(zhì)奇偶用單調(diào),觀察圖像最美妙;若要詳細證明它
9)還須將那定義抓。組合函數(shù)單調(diào)性,判斷它們有法則,增加上增等于增
10)增減去減等于增,減加上減等于減,減減去增等于減。復(fù)合函數(shù)單調(diào)性
11)同增異減巧判斷。復(fù)合函數(shù)奇偶性,偶加減偶等于偶,奇加減奇等于奇。
12)偶加減奇非奇偶,偶乘除偶等于偶,奇乘除奇等于偶,奇乘除偶等于奇。
13)周期對稱兩種性,觀察結(jié)構(gòu)最可行;內(nèi)同表示周期性,內(nèi)反表示對稱性。
14)中心對稱軸對稱,函數(shù)還具周期性;函數(shù)零點方程根,圖像交點橫坐標;
15)函數(shù)零點有幾個,畫出圖像看交點;兩個端點都代入,相乘為負有零點。
高中數(shù)學知識點總結(jié) 8
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1)元素的確定性;
2)元素的互異性;
3)元素的無序性。
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
。2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
。4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1)用拉丁字母表示集合:A={我校的籃球隊員}B={12345}。
2)集合的表示方法:列舉法與描述法。
注意。撼S脭(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
關(guān)于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
、跀(shù)學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類:
1)有限集含有有限個元素的集合。
2)無限集含有無限個元素的集合。
3)空集不含任何元素的集合例:{x|x2=—5}。
二、集合間的基本關(guān)系
1、“包含”關(guān)系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。
2、“相等”關(guān)系(5≥5,且5≤5,則5=5)
實例:設(shè)A={x|x2—1=0}B={—11}“元素相同”
結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B。
、偃魏我粋集合是它本身的子集。AA
、谡孀蛹喝绻鸄?B且A?B那就說集合A是集合B的`真子集,記作AB(或BA)
、廴绻鸄BBC那么AC
、苋绻鸄B同時BA那么A=B
3、不含任何元素的集合叫做空集,記為Φ。
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運算
1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。
4、全集與補集
。1)補集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x?x?S且x?A}。
。2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。
高中數(shù)學知識點總結(jié) 9
(一)導(dǎo)數(shù)第一定義
設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f(x0) ,即導(dǎo)數(shù)第一定義
(二)導(dǎo)數(shù)第二定義
設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f(x0) ,即 導(dǎo)數(shù)第二定義
(三)導(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時函數(shù) y = f(x) 對于區(qū)間 I 內(nèi)的每一個確定的 x 值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y, f(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
(四)單調(diào)性及其應(yīng)用
1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內(nèi)符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f(x)
(2)f(x)>0的'解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
學習了導(dǎo)數(shù)基礎(chǔ)知識點,接下來可以學習高二數(shù)學中涉及到的導(dǎo)數(shù)應(yīng)用的部分。
高中數(shù)學知識點總結(jié) 10
。浩矫
1.經(jīng)過不在同一條直線上的三點確定一個面.
注:兩兩相交且不過同一點的四條直線必在同一平面內(nèi).
2.兩個平面可將平面分成3或4部分.(①兩個平面平行,②兩個平面相交)
3.過三條互相平行的直線可以確定1或3個平面.(①三條直線在一個平面內(nèi)平行,②三條直線不在一個平面內(nèi)平行)
[注]:三條直線可以確定三個平面,三條直線的公共點有0或1個.
4.三個平面最多可把空間分成8部分.(X、Y、Z三個方向)
。嚎臻g的直線與平面
⒈平面的基本性質(zhì)⑴三個公理及公理三的三個推論和它們的用途.、菩倍䴗y畫法.
、部臻g兩條直線的位置關(guān)系:相交直線、平行直線、異面直線.
、殴硭(平行線的傳遞性).等角定理.
、飘惷嬷本的判定:判定定理、反證法.
、钱惷嬷本所成的角:定義(求法)、范圍.
、持本和平面平行直線和平面的位置關(guān)系、直線和平面平行的判定與性質(zhì).
、粗本和平面垂直
、胖本和平面垂直:定義、判定定理.
、迫咕定理及逆定理.
5.平面和平面平行
兩個平面的位置關(guān)系、兩個平面平行的判定與性質(zhì).
6.平面和平面垂直
互相垂直的平面及其判定定理、性質(zhì)定理.
(二)直線與平面的平行和垂直的證明思路(見附圖)
(三)夾角與距離
7.直線和平面所成的角與二面角
、牌矫娴男本和平面所成的角:三面角余弦公式、最小角定理、斜線和平
面所成的角、直線和平面所成的角.
、贫娼牵孩俣x、范圍、二面角的平面角、直二面角.
②互相垂直的平面及其判定定理、性質(zhì)定理.
8.距離
⑴點到平面的.距離.
、浦本到與它平行平面的距離.
⑶兩個平行平面的距離:兩個平行平面的公垂線、公垂線段.
、犬惷嬷本的距離:異面直線的公垂線及其性質(zhì)、公垂線段.
(四)簡單多面體與球
9.棱柱與棱錐
、哦嗝骟w.
、评庵c它的性質(zhì):棱柱、直棱柱、正棱柱、棱柱的性質(zhì).
、瞧叫辛骟w與長方體:平行六面體、直平行六面體、長方體、正四棱柱、
正方體;平行六面體的性質(zhì)、長方體的性質(zhì).
、壤忮F與它的性質(zhì):棱錐、正棱錐、棱錐的性質(zhì)、正棱錐的性質(zhì).
、芍崩庵驼忮F的直觀圖的畫法.
10.多面體歐拉定理的發(fā)現(xiàn)
、藕唵味嗝骟w的歐拉公式.
、普嗝骟w.
11.球
、徘蚝退男再|(zhì):球體、球面、球的大圓、小圓、球面距離.
⑵球的體積公式和表面積公式.
。撼S媒Y(jié)論、方法和公式
1.異面直線所成角的求法:
(1)平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;
(2)補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;
2.直線與平面所成的角
斜線和平面所成的是一個直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的射影。通常通過斜線上某個特殊點作出平面的垂線段,垂足和斜足的連線,是產(chǎn)生線面角的關(guān)鍵;
3.二面角的求法
(1)定義法:直接在二面角的棱上取一點(特殊點),分別在兩個半平面內(nèi)作棱的垂線,得出平面角,用定義法時,要認真觀察圖形的特性;
(2)三垂線法:已知二面角其中一個面內(nèi)一點到一個面的垂線,用三垂線定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;
(4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫出平面角;
特別:對于一類沒有給出棱的二面角,應(yīng)先延伸兩個半平面,使之相交出現(xiàn)棱,然后再選用上述方法(尤其要考慮射影法)。
4.空間距離的求法
(1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進行計算;
(2)求點到直線的距離,一般用三垂線定理作出垂線再求解;
(3)求點到平面的距離,一是用垂面法,借助面面垂直的性質(zhì)來作,因此,確定已知面的垂面是關(guān)鍵;二是不作出公垂線,轉(zhuǎn)化為求三棱錐的高,利用等體積法列方程求解;
高中數(shù)學知識點總結(jié) 11
函數(shù)的表示方法
1.函數(shù)的三種表示方法列表法圖象法解析法
2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù)。注意兩點:
、俜侄魏瘮(shù)是一個函數(shù),不要誤認為是幾個函數(shù)。
、诜侄魏瘮(shù)的定義域是各段定義域的并集,值域是各段值域的并集。
求定義域的幾種情況
、偃鬴(x)是整式,則函數(shù)的定義域是實數(shù)集R;
②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實數(shù)集;
、廴鬴(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合;
、苋鬴(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零。
、菀驗榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時為零。
、奕鬴(x)是由幾個部分的數(shù)學式子構(gòu)成的.,則函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合;
、呷鬴(x)是由實際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實際問題
高中數(shù)學知識點總結(jié) 12
4.1.1圓的標準方程
1、圓的標準方程:(xa)(yb)r
圓心為A(a,b),半徑為r的圓的方程
2、點M(x0,y0)與圓(xa)(yb)r的關(guān)系的判斷方法:
。1)(x0a)(y0b)>r,點在圓外(2)(x0a)(y0b)=r,點在圓上(3)(x0a)(y0b)
(4)當l|r1r2|時,圓C1與圓C2內(nèi)切;(5)當l|r1r2|時,圓C1與圓C2內(nèi)含;
4.2.3直線與圓的方程的應(yīng)用
1、利用平面直角坐標系解決直線與圓的位置關(guān)系;2、過程與方法
用坐標法解決幾何問題的步驟:
第一步:建立適當?shù)?平面直角坐標系,用坐標和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運算,解決代數(shù)問題;第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論.
RMOPM"4.3.1空間直角坐標系
1、點M對應(yīng)著唯一確定的有序?qū)崝?shù)組(x,y,z),x、y、z分別是P、Q、R在x、y、z軸上的坐標
2、有序?qū)崝?shù)組(x,y,z),對應(yīng)著空間直角坐標系中的一點
xQy3、空間中任意點M的坐標都可以用有序?qū)崝?shù)組(x,y,z)來表示,該數(shù)組叫做點M在此空間直角坐標系中的坐標,記M(x,y,z),x叫做點M的橫坐標,y叫做點M的縱坐標,z叫做點M的豎坐標。z4.3.2空間兩點間的距離公式1、空間中任意一點P1(x1,y1,z1)到點P2(x2,y2,z2)之間的距離公式222OM1N1xMM2HN2NyP2P1P1P2(x1x2)(y1y2)(z1z2)
高中數(shù)學知識點總結(jié) 13
導(dǎo)數(shù)及其應(yīng)用
一.導(dǎo)數(shù)概念的引入
1.導(dǎo)數(shù)的物理意義:瞬時速率。一般的,函數(shù)yf(x)在xx0處的瞬時變化率是
x0limf(x0x)f(x0),
x我們稱它為函數(shù)yf(x)在xx0處的導(dǎo)數(shù),記作f(x0)或y|xx0,即f(x0)=limx0f(x0x)f(x0)
x例1.在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:
s)存在函數(shù)關(guān)系
h(t)4.9t26.5t10
運動員在t=2s時的瞬時速度是多少?解:根據(jù)定義
vh(2)limh(2x)h(2)13.1
x0x即該運動員在t=2s是13.1m/s,符號說明方向向下
2.導(dǎo)數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當點Pn趨近于P時,直線PT與
曲線相切。容易知道,割線PPn的斜率是knf(xn)f(x0),當點Pn趨近于P時,
xnx0函數(shù)yf(x)在xx0處的導(dǎo)數(shù)就是切線PT的斜率k,即klimx0f(xn)f(x0)f(x0)
xnx03.導(dǎo)函數(shù):當x變化時,f(x)便是x的一個函數(shù),我們稱它為f(x)的導(dǎo)函數(shù).yf(x)的導(dǎo)函數(shù)有時也記作y,即f(x)lim
二.導(dǎo)數(shù)的計算
1.函數(shù)yf(x)c的導(dǎo)數(shù)2.函數(shù)yf(x)x的導(dǎo)數(shù)3.函數(shù)yf(x)x的導(dǎo)數(shù)
2x0f(xx)f(x)
x
4.函數(shù)yf(x)1的導(dǎo)數(shù)x基本初等函數(shù)的導(dǎo)數(shù)公式:
1若f(x)c(c為常數(shù)),則f(x)0;
2若f(x)x,則f(x)x1;
3若f(x)sinx,則f(x)cosx
4若f(x)cosx,則f(x)sinx;
5若f(x)ax,則f(x)axlna6若f(x)e,則f(x)e
xx1xlna18若f(x)lnx,則f(x)
xx7若f(x)loga,則f(x)導(dǎo)數(shù)的運算法則
1.[f(x)g(x)]f(x)g(x)
2.[f(x)g(x)]f(x)g(x)f(x)g(x)
3.[f(x)f(x)g(x)f(x)g(x)]g(x)[g(x)]
2復(fù)合函數(shù)求導(dǎo)
yf(u)和ug(x),稱則y可以表示成為x的函數(shù),即yf(g(x))為一個復(fù)合函數(shù)yf(g(x))g(x)
三.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
1.函數(shù)的單調(diào)性與導(dǎo)數(shù):
一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系:
在某個區(qū)間(a,b)內(nèi),如果f(x)0,那么函數(shù)yf(x)在這個區(qū)間單調(diào)遞增;如果f(x)0,那么函數(shù)yf(x)在這個區(qū)間單調(diào)遞減
2.函數(shù)的極值與導(dǎo)數(shù)
極值反映的是函數(shù)在某一點附近的大小情況.求函數(shù)yf(x)的極值的方法是:
(1)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極大值;
(2)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極小值;
3.函數(shù)的最大(小)值與導(dǎo)數(shù)
函數(shù)極大值與最大值之間的關(guān)系.
求函數(shù)yf(x)在[a,b]上的最大值與最小值的步驟
(1)求函數(shù)yf(x)在(a,b)內(nèi)的'極值;
。2)將函數(shù)yf(x)的各極值與端點處的函數(shù)值f(a),f(b)比較,其中最大的是一個最大值,最小的是最小值.
四.生活中的優(yōu)化問題
利用導(dǎo)數(shù)的知識,求函數(shù)的最大(小)值,從而解決實際問題
第二章推理與證明
考點一合情推理與類比推理
根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理
根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.
類比推理的一般步驟:
(1)找出兩類事物的相似性或一致性;
(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想);
(3)一般的,事物之間的各個性質(zhì)并不是孤立存在的,而是相互制約的如果兩個事物在某些性質(zhì)上相同或相似,那么他們在另一寫性質(zhì)上也可能相同或類似,類比的結(jié)論可能是真的
(4)一般情況下,如果類比的相似性越多,相似的性質(zhì)與推測的性質(zhì)之間越相關(guān),那么類比得出的命題越可靠.
考點二演繹推理(俗稱三段論)
由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.
考點三數(shù)學歸納法
1.它是一個遞推的數(shù)學論證方法.
2.步驟:A.命題在n=1(或n0)時成立,這是遞推的基礎(chǔ);B.假設(shè)在n=k時命題成立C.證明n=k+1時命題也成立,
完成這兩步,就可以斷定對任何自然數(shù)(或n>=n0,且nN)結(jié)論都成立。
考點三證明
1.反證法:
2.分析法:
3.綜合法:
第一章數(shù)系的擴充和復(fù)數(shù)的概念考點一:復(fù)數(shù)的概念
(1)復(fù)數(shù):形如abi(aR,bR)的數(shù)叫做復(fù)數(shù),a和b分別叫它的實部和虛部.
(2)分類:復(fù)數(shù)abi(aR,bR)中,當b0,就是實數(shù);b0,叫做虛數(shù);當a0,b0時,叫做純虛數(shù).
(3)復(fù)數(shù)相等:如果兩個復(fù)數(shù)實部相等且虛部相等就說這兩個復(fù)數(shù)相等.
(4)共軛復(fù)數(shù):當兩個復(fù)數(shù)實部相等,虛部互為相反數(shù)時,這兩個復(fù)數(shù)互為共軛復(fù)數(shù).
(5)復(fù)平面:建立直角坐標系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸除去原點的部分叫做虛軸。
(6)兩個實數(shù)可以比較大小,但兩個復(fù)數(shù)如果不全是實數(shù)就不能比較大小。
高中數(shù)學知識點總結(jié) 14
數(shù)列的函數(shù)理解:
、贁(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N_或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。②用函數(shù)的觀點認識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a。列表法;b。圖像法;c。解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。
通項公式:數(shù)列的第N項an與項的序數(shù)n之間的關(guān)系可以用一個公式an=f(n)來表示,這個公式就叫做這個數(shù)列的通項公式(注:通項公式不)。
數(shù)列通項公式的特點:
(1)有些數(shù)列的通項公式可以有不同形式,即不。
。2)有些數(shù)列沒有通項公式(如:素數(shù)由小到大排成一列2,3,5,7,11。)。
遞推公式:如果數(shù)列{an}的第n項與它前一項或幾項的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的遞推公式。
數(shù)列遞推公式特點:
。1)有些數(shù)列的遞推公式可以有不同形式,即不。
(2)有些數(shù)列沒有遞推公式。
有遞推公式不一定有通項公式。
注:數(shù)列中的項必須是數(shù),它可以是實數(shù),也可以是復(fù)數(shù)。
等差數(shù)列通項公式
an=a1+(n—1)d
n=1時a1=S1
n≥2時an=Sn—Sn—1
an=kn+b(k,b為常數(shù))推導(dǎo)過程:an=dn+a1—d令d=k,a1—d=b則得到an=kn+b
等差中項
由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。
有關(guān)系:A=(a+b)÷2
前n項和
倒序相加法推導(dǎo)前n項和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①
Sn=an+an—1+an—2+······+a1
=an+(an—d)+(an—2d)+······+[an—(n—1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n—1)d÷2
Sn=dn2÷2+n(a1—d÷2)
亦可得
a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n
an=2sn÷n—a1
有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1
等差數(shù)列性質(zhì)
一、任意兩項am,an的'關(guān)系為:
an=am+(n—m)d
它可以看作等差數(shù)列廣義的通項公式。
二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq
四、對任意的k∈N_,有Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差數(shù)列。
怎么樣提高數(shù)學成績
首先想要提升數(shù)學成績,成為數(shù)學學霸的前提是要對數(shù)學有良好的學習興趣。其次要學會課前預(yù)習,方便自己能夠更加深入的吃透課堂上的知識點。然后還要學會總結(jié)復(fù)習,總結(jié)自己課堂上的問題,復(fù)習課堂上的重要知識點,從而提高自己的數(shù)學成績。
提升數(shù)學成績還要擁有一個錯題本,和數(shù)學資料。認真對待自己的學習工具,多做練習題,找出自己的薄弱環(huán)節(jié)和自己常犯的題型,記在錯題本上,常練習,常鞏固。在自己的數(shù)學資料中摸索出適合自己的解題技巧,反復(fù)練習加以運用,一定會提升你的數(shù)學成績。
學會聽課,在課堂上勇于提問。數(shù)學最重要的部分都是在課本上,所以必須要掌握好課堂的45分鐘。把握好數(shù)學課本,為自己打下一個好基礎(chǔ),這樣才能更有效的提升你的數(shù)學成績。學會做課堂筆記,把每節(jié)課的重要知識點記下來,以便接下來的復(fù)習。
學好數(shù)學的方法技巧整理
預(yù)習的方法
上課之前一定要抽時間進行預(yù)習,有時預(yù)習比做作業(yè)更重要,因為通過預(yù)習我們可以初步掌握課程的大致內(nèi)容,聽課就能夠把握好重點,針對性比較強,還會帶著問題去聽課,聽課效率就會比較高,上課聽明白了,完成作業(yè)也會更好更快,最終會形成良性循環(huán)。
聽懂課的習慣
注意聽教師每節(jié)課強調(diào)的學習重點,注意聽對定理、公式、法則的引入與推導(dǎo)的方法和過程,注意聽對例題關(guān)鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點,沿著知識的發(fā)生發(fā)展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉(zhuǎn)變?yōu)椤皶牎薄?/p>
不斷練習
不斷練習是指多做數(shù)學練習題。希望學好數(shù)學,多做練習是必不可少的。做練習的原因有以下三點:第一,熟練和鞏固學到的數(shù)學知識;二,引導(dǎo)同學靈活運用所學知識點以及獨立思考獨立做題的水平;第三,融會貫通。通過做題將所學的所有知識點結(jié)合起來,加深同學對數(shù)學體系化的理解。
高中數(shù)學知識點總結(jié) 15
第一章三角函數(shù)
1.1任意角和弧度制
正角、負角、零角正角、負角、零角
象限角、軸線角象限角、軸線角
終邊相同的角終邊相同的角
弧度制、弧度與角度的互化弧度制、弧度與角度的互化
1.2任意角的三角函數(shù)
任意角的三角函數(shù)任意角的三角函數(shù)
三角函數(shù)線(正弦線、余弦線、正切線)三角函數(shù)線(正弦線、余弦線、正切線)
同角三角函數(shù)的基本關(guān)系式同角三角函數(shù)的基本關(guān)系式
1.3三角函數(shù)的誘導(dǎo)公式
三角函數(shù)的誘導(dǎo)公式三角函數(shù)的誘導(dǎo)公式
1.4三角函數(shù)的圖象與性質(zhì)
正弦、余弦函數(shù)的圖象與性質(zhì)(定義域、值域、單調(diào)性、奇偶性等)正弦、余弦函數(shù)的.圖象與性質(zhì)(定義域、值域、單調(diào)性、奇偶性等)
正切、余切函數(shù)的圖象與性質(zhì)(定義域、值域、單調(diào)性、奇偶性等)正切、余切函數(shù)的圖象與性質(zhì)(定義域、值域、單調(diào)性、奇偶性等)
1.5函數(shù)y=Asin(ωxφ)的圖象
函數(shù)y=Asin(ωxφ)的圖象與性質(zhì)函數(shù)y=Asin(wx φ)的圖象與性質(zhì)
1.6三角函數(shù)模型的簡單應(yīng)用
第二章平面向量
2.1平面向量的實際背景及基本概念
向量的概念及幾何表示向量的概念及幾何表示
零向量與單位向量零向量與單位向量
相等向量與共線向量的定義相等向量與共線向量的定義
2.2平面向量的線性運算
向量的加、減法運算及幾何意義向量的加、減法運算及幾何意義
向量數(shù)乘運算及幾何意義向量數(shù)乘運算及幾何意義
向量的線性運算及坐標表示向量的線性運算及坐標表示
2.3平面向量的基本定理及坐標表示
平面向量基本定理及坐標表示平面向量基本定理及坐標表示
向量共線的充要條件及坐標表示向量共線的充要條件及坐標表示
2.4平面向量的數(shù)量積
向量數(shù)量積的含義及幾何意義向量數(shù)量積的含義及幾何意義
向量數(shù)量積的運算向量數(shù)量積的運算
用數(shù)量積判斷兩個向量的垂直關(guān)系用數(shù)量積判斷兩個向量的垂直關(guān)系
用坐標表示向量的數(shù)量積用坐標表示向量的數(shù)量積
向量模的計算向量模的計算
用數(shù)量積表示兩個向量的夾角用數(shù)量積表示兩個向量的夾角
2.5平面向量應(yīng)用舉例
平面向量的應(yīng)用平面向量的應(yīng)用
第三章三角恒等變換
3.1兩角和與差的正弦、余弦和正切公式
兩角和與差的三角函數(shù)及三角恒等變換兩角和與差的三角函數(shù)及三角恒等變換
3.2簡單的三角恒等變換
兩角和與差的三角函數(shù)及三角恒等變換
高中數(shù)學知識點總結(jié) 16
一 集合與簡易邏輯
集合具有四個性質(zhì) 廣泛性 集合的元素什么都可以
確定性 集合中的元素必須是確定的,比如說是好學生就不具有這種性質(zhì),因為它的概念是模糊不清的
互異性 集合中的元素必須是互不相等的,一個元素不能重復(fù)出現(xiàn)
無序性 集合中的元素與順序無關(guān)
二 函數(shù)
這是個重點,但是說起來也不好說,要作專題訓(xùn)練,比如說二次函數(shù),指數(shù)對數(shù)函數(shù)等等做這一類型題的時候,要掌握幾個函數(shù)思想如 構(gòu)造函數(shù) 函數(shù)與方程結(jié)合 對稱思想,換元等等
三 數(shù)列
這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯(lián)系,這樣才能做好,注意觀察數(shù)列的形式判斷是什么數(shù)列,還要掌握求數(shù)列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等
四 三角函數(shù)
三角函數(shù)不是考試題型,只是個應(yīng)用的`知識點,所以只要記熟特殊角的三角函數(shù)值和一些重要的定理就行
五 平面向量
這是個比較抽象的把幾何與代數(shù)結(jié)合起來的重難點,結(jié)體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結(jié)體的時候就有思路,能夠把問題簡單化,有利于提高做題效率
高一的數(shù)學只是入門,只要把高一數(shù)學知識點掌握了,做題就沒什么大問題了,數(shù)學就可以上130。
高中數(shù)學知識點總結(jié) 17
分層抽樣
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
3.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
分層標準
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。
(2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
高三數(shù)學知識點筆記整理
函數(shù)的奇偶性
1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).
正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關(guān)于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).
2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應(yīng)用定義的等價形式:
注意如下結(jié)論的運用:
(1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);
(4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。
3、有關(guān)奇偶性的幾個性質(zhì)及結(jié)論
(1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對稱.
(2)如要函數(shù)的定義域關(guān)于原點對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).
(3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.
(4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負對稱區(qū)間上的單調(diào)性是相同(反)的。
(5)若f(x)的定義域關(guān)于原點對稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).
(6)奇偶性的推廣
函數(shù)y=f(x)對定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù).
高一必修二數(shù)學知識點總結(jié)
方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根,函數(shù)的'圖象與坐標軸有交點,函數(shù)有零點.
3、函數(shù)零點的求法:
(1)(代數(shù)法)求方程的實數(shù)根;
(2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
(1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
(2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
高一必修二數(shù)學知識點總結(jié)梳理
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。
意義:
、僦本的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;
、谠谄矫嬷苯亲鴺讼抵,每一條直線都有一個確定的傾斜角;
、蹆A斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時α∈(0°,90°)
k<0時α∈(90°,180°)
k=0時α=0°
當α=90°時k不存在
ax+by+c=0(a≠0)傾斜角為A,則tanA=-a/b,A=arctan(-a/b)
當a≠0時,傾斜角為90度,即與X軸垂直
高一必修二數(shù)學知識點總結(jié)歸納
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率。
【高中數(shù)學知識點總結(jié)最新】相關(guān)文章:
高中數(shù)學立體幾何知識點總結(jié)最新05-26
高中數(shù)學的知識點總結(jié)04-10
高中數(shù)學導(dǎo)數(shù)知識點總結(jié)02-11
高中數(shù)學知識點的總結(jié)03-13
高中數(shù)學知識點的總結(jié)12-19
高中數(shù)學知識點總結(jié)09-22
高中數(shù)學知識點總結(jié)05-15