欧美精品手机一级在线播放,中文字幕在线欧美日韩,欧美精品中文字幕亚洲专区,国产免费观看网站

    <mark id="hrvb1"><strong id="hrvb1"></strong></mark>
  • <td id="hrvb1"></td>

    高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)總結(jié)分享

    時(shí)間:2021-10-08 13:36:26 總結(jié) 我要投稿

    人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)總結(jié)5篇分享

      總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書面材料,它可以有效鍛煉我們的語(yǔ)言組織能力,讓我們抽出時(shí)間寫寫總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編收集整理的人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)總結(jié)5篇分享,希望對(duì)大家有所幫助。

    人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)總結(jié)5篇分享

    人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)總結(jié)5篇分享1

      1. 對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無(wú)序性”。

      中元素各表示什么?

      注重借助于數(shù)軸和文氏圖解集合問(wèn)題。

      空集是一切集合的子集,是一切非空集合的真子集。

      3. 注意下列性質(zhì):

      (3)德摩根定律:

      4. 你會(huì)用補(bǔ)集思想解決問(wèn)題嗎?(排除法、間接法)

      的取值范圍。

      6. 命題的四種形式及其相互關(guān)系是什么?

      (互為逆否關(guān)系的命題是等價(jià)命題。)

      原命題與逆否命題同真、同假;逆命題與否命題同真同假。

      7. 對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

      (一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

      8. 函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

      (定義域、對(duì)應(yīng)法則、值域)

      9. 求函數(shù)的定義域有哪些常見類型?

      10. 如何求復(fù)合函數(shù)的定義域?

      義域是_____________。

      11. 求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?

      12. 反函數(shù)存在的條件是什么?

      (一一對(duì)應(yīng)函數(shù))

      求反函數(shù)的步驟掌握了嗎?

      (①反解x;②互換x、y;③注明定義域)

      13. 反函數(shù)的性質(zhì)有哪些?

     、倩榉春瘮(shù)的圖象關(guān)于直線y=x對(duì)稱;

     、诒4媪嗽瓉(lái)函數(shù)的單調(diào)性、奇函數(shù)性;

      14. 如何用定義證明函數(shù)的單調(diào)性?

      (取值、作差、判正負(fù))

      如何判斷復(fù)合函數(shù)的單調(diào)性?

      ∴……)

      15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

      值是( )

      A. 0B. 1C. 2D. 3

      ∴a的值為3)

      16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

      (f(x)定義域關(guān)于原點(diǎn)對(duì)稱)

      注意如下結(jié)論:

      (1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

      17. 你熟悉周期函數(shù)的定義嗎?

      函數(shù),T是一個(gè)周期。)

    人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)總結(jié)5篇分享2

      空間兩條直線只有三種位置關(guān)系:平行、相交、異面

      1、按是否共面可分為兩類:

      (1)共面:平行、相交

      (2)異面:

      異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

      異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。

      兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

      兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

      2、若從有無(wú)公共點(diǎn)的角度看可分為兩類:

      (1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面

      直線和平面的位置關(guān)系:

      直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

      ①直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

     、谥本和平面相交——有且只有一個(gè)公共點(diǎn)

      直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

      空間向量法(找平面的法向量)

      規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角

      由此得直線和平面所成角的取值范圍為[0°,90°]

      最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

      三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

      直線和平面垂直

      直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

      直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

      直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)

      直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。

      直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

      直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

    人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)總結(jié)5篇分享3

      1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

      (1)棱柱:

      幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

      (2)棱錐

      幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的`比的平方.

      (3)棱臺(tái):

      幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

      (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

      幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形.

      (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形.

      (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形.

      (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

      幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.

      3、空間幾何體的直觀圖——斜二測(cè)畫法

      斜二測(cè)畫法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

     、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半.

      4、柱體、錐體、臺(tái)體的表面積與體積

      (1)幾何體的表面積為幾何體各個(gè)面的面積的和.

      (2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)

      (3)柱體、錐體、臺(tái)體的體積公式

    人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)總結(jié)5篇分享4

      1. 函數(shù)的奇偶性

      (1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;

      (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));

      (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0);

      (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

      (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

      2. 復(fù)合函數(shù)的有關(guān)問(wèn)題

      (1)復(fù)合函數(shù)定義域求法:若已知 的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求 f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

      (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

      3.函數(shù)圖像(或方程曲線的對(duì)稱性)

      (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

      (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

      (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

      (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

      (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

      (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x= 對(duì)稱;

      4.函數(shù)的周期性

      (1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

      (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

      (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

      (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2 的周期函數(shù);

      (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);

      (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);

      5.方程k=f(x)有解 k∈D(D為f(x)的值域);

      6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

      7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);

      (3) l og a b的符號(hào)由口訣“同正異負(fù)”記憶; (4) a log a N= N ( a>0,a≠1,N>0 );

      8. 判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

      9. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

      10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

      11.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

      12. 依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問(wèn)題

      13. 恒成立問(wèn)題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

    人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)總結(jié)5篇分享5

      冪函數(shù)

      定義:

      形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞浚笖?shù)為常量的函數(shù)稱為冪函數(shù)。

      定義域和值域:

      當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

      性質(zhì):

      對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

      首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞),

      當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

      排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

      排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

      排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)?偨Y(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:

      如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

      如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

      在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

      在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

      而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

      由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

      可以看到:

      (1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

      (2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

      (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

      (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

      (5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。

      (6)顯然冪函數(shù)。

    【人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)總結(jié)5篇分享】相關(guān)文章:

    高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)08-09

    高一政治必修一知識(shí)點(diǎn)總結(jié)05-09

    高一物理必修一知識(shí)點(diǎn)總結(jié)05-04

    高一語(yǔ)文必修一知識(shí)點(diǎn)總結(jié)01-12

    《登高》說(shuō)課稿(人教版高一必修三)12-06

    高中地理必修一知識(shí)點(diǎn)總結(jié)人教版01-06

    《雨巷》人教版高一必修一教學(xué)設(shè)計(jì)03-01

    《勸學(xué)》導(dǎo)學(xué)案(人教版高一必修三)12-06

    《人教版高一必修雨巷》教學(xué)設(shè)計(jì)12-30

    高一地理必修一知識(shí)點(diǎn)總結(jié)10-11