欧美精品手机一级在线播放,中文字幕在线欧美日韩,欧美精品中文字幕亚洲专区,国产免费观看网站

    <mark id="hrvb1"><strong id="hrvb1"></strong></mark>
  • <td id="hrvb1"></td>

    必修三數(shù)學(xué)知識點(diǎn)總結(jié)

    時(shí)間:2024-02-05 08:08:00 知識點(diǎn)總結(jié) 我要投稿
    • 相關(guān)推薦

    必修三數(shù)學(xué)知識點(diǎn)總結(jié)

      總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,它能幫我們理順知識結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),讓我們抽出時(shí)間寫寫總結(jié)吧。那么如何把總結(jié)寫出新花樣呢?下面是小編幫大家整理的必修三數(shù)學(xué)知識點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。

    必修三數(shù)學(xué)知識點(diǎn)總結(jié)

      直線方程形式

      一般式:Ax+By+C=0(AB≠0)

      斜截式:y=kx+b(k是斜率b是x軸截距)

      點(diǎn)斜式:y-y1=k(x-x1)(直線過定點(diǎn)(x1,y1))

      兩點(diǎn)式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過定點(diǎn)(x1,y1),(x2,y2))

      截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)

      做題過程中,點(diǎn)斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過渡形態(tài)。

      在與圓及圓錐曲線結(jié)合的過程中,還要用到點(diǎn)到直線距離公式。

      集合間的基本關(guān)系

      1.“包含”關(guān)系—子集

      注意:有兩種可能

      (1)A是B的一部分。

      (2)A與B是同一集合。

      反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

      2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

      實(shí)例:設(shè)A={__2-1=0}B={-1,1}“元素相同”

      結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

     、偃魏我粋(gè)集合是它本身的子集。AíA

     、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

     、廴绻鸄íB,BíC,那么AíC

     、苋绻鸄íB同時(shí)BíA那么A=B

      3.不含任何元素的集合叫做空集,記為Φ

      正棱錐

      正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

      正棱錐的性質(zhì):

      (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

      (2)多個(gè)特殊的直角三角形

      a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

      b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

      集合與元素

      一個(gè)東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

      例如:你所在的班級是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對于這個(gè)班級集合來說,是它的一個(gè)元素;

      而整個(gè)學(xué)校又是由許許多多個(gè)班級組成的集合,你所在的班級只是其中的一分子,是一個(gè)元素。

      班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。

      解集合問題的關(guān)鍵

      解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時(shí),可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。

      必修三數(shù)學(xué)知識點(diǎn)梳理

      求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

      1、直譯法:直接將條件翻譯成等式,整理化簡后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

      2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

      3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

      4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

      5、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

      求動(dòng)點(diǎn)軌跡方程的一般步驟:

      ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

      ②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

      ③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

      ④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

     、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

    【必修三數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:

    高二數(shù)學(xué)必修三知識點(diǎn)總結(jié)04-25

    數(shù)學(xué)必修五知識點(diǎn)總結(jié)02-17

    高中數(shù)學(xué)必修三知識點(diǎn)總結(jié)06-17

    必修二數(shù)學(xué)知識點(diǎn)總結(jié)02-15

    數(shù)學(xué)必修三重點(diǎn)知識點(diǎn)總結(jié)04-24

    高三語文必修三知識點(diǎn)總結(jié)02-25

    必修二數(shù)學(xué)圓與方程知識點(diǎn)總結(jié)08-05

    新教材數(shù)學(xué)必修二知識點(diǎn)總結(jié)04-24

    高中數(shù)學(xué)知識點(diǎn)必修總結(jié)08-18

    高中數(shù)學(xué)必修二知識點(diǎn)總結(jié)02-24