欧美精品手机一级在线播放,中文字幕在线欧美日韩,欧美精品中文字幕亚洲专区,国产免费观看网站

    <mark id="hrvb1"><strong id="hrvb1"></strong></mark>
  • <td id="hrvb1"></td>

    高中數(shù)列公式總結(jié)

    時(shí)間:2021-12-07 10:09:30 總結(jié) 我要投稿
    • 相關(guān)推薦

    高中數(shù)列公式總結(jié)

      總結(jié)就是對一個(gè)時(shí)期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,它可以有效鍛煉我們的語言組織能力,不妨坐下來好好寫寫總結(jié)吧?偨Y(jié)一般是怎么寫的呢?下面是小編為大家收集的高中數(shù)列公式總結(jié),僅供參考,大家一起來看看吧!

    高中數(shù)列公式總結(jié)

      等比數(shù)列公式性質(zhì)知識點(diǎn)

      1.等比數(shù)列的有關(guān)概念

      (1)定義:

      如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)式為an+1/an=q(n∈N_,q為非零常數(shù)).

      (2)等比中項(xiàng):

      如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng).即:G是a與b的等比中項(xiàng)a,G,b成等比數(shù)列G2=ab.

      2.等比數(shù)列的有關(guān)公式

      (1)通項(xiàng)公式:an=a1qn-1.

      3.等比數(shù)列{an}的常用性質(zhì)

      (1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

      特別地,a1an=a2an-1=a3an-2=….

      (2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時(shí)q≠-1);an=amqn-m.

      4.等比數(shù)列的特征

      (1)從等比數(shù)列的定義看,等比數(shù)列的任意項(xiàng)都是非零的,公比q也是非零常數(shù).

      (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.

      5.等比數(shù)列的前n項(xiàng)和Sn

      (1)等比數(shù)列的前n項(xiàng)和Sn是用錯(cuò)位相減法求得的,注意這種思想方法在數(shù)列求和中的運(yùn)用.

      (2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

      等比數(shù)列知識點(diǎn)

      1.等比中項(xiàng)

      如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。

      有關(guān)系:

      注:兩個(gè)非零同號的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

      2.等比數(shù)列通項(xiàng)公式

      an=a1_q’(n-1)(其中首項(xiàng)是a1,公比是q)

      an=Sn-S(n-1)(n≥2)

      前n項(xiàng)和

      當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

      Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

      當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

      Sn=na1

      3.等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系

      an=a1=s1(n=1)

      an=sn-s(n-1)(n≥2)

      4.等比數(shù)列性質(zhì)

      (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

      (2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

      (3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

      (4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。

      記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

      另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

      (5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q)

      (6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m)

      (7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。

      注意:上述公式中a’n表示a的n次方。

      等比數(shù)列知識點(diǎn)總結(jié)

      等比數(shù)列:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0)。

      1:等比數(shù)列通項(xiàng)公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

      2:等比數(shù)列求和公式:等比求和:Sn=a1+a2+a3+.......+an

     、佼(dāng)q≠1時(shí),Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

     、诋(dāng)q=1時(shí),Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

      3:等比中項(xiàng):aq·ap=ar^2,ar則為ap,aq等比中項(xiàng)。

      4:性質(zhì):

     、偃鬽、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;

      ②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.

      例題:設(shè)ak,al,am,an是等比數(shù)列中的第k、l、m、n項(xiàng),若k+l=m+n,求證:ak_al=am_an

      證明:設(shè)等比數(shù)列的首項(xiàng)為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

      所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

      說明:這個(gè)例題是等比數(shù)列的一個(gè)重要性質(zhì),它在解題中常常會用到。它說明等比數(shù)列中距離兩端(首末兩項(xiàng))距離等遠(yuǎn)的兩項(xiàng)的乘積等于首末兩項(xiàng)的乘積,即:a(1+k)·a(n-k)=a1·an

      對于等差數(shù)列,同樣有:在等差數(shù)列中,距離兩端等這的兩項(xiàng)之和等于首末兩項(xiàng)之和。即:a(1+k)+a(n-k)=a1+an

    【高中數(shù)列公式總結(jié)】相關(guān)文章:

    數(shù)列公式及結(jié)論總結(jié)11-07

    數(shù)列求和公式方法總結(jié)12-08

    數(shù)列、數(shù)列的通項(xiàng)公式教案07-04

    數(shù)列通項(xiàng)公式方法總結(jié)12-07

    有關(guān)數(shù)列求和公式方法總結(jié)12-02

    等差數(shù)列公式10-02

    等比數(shù)列公式及推導(dǎo)10-04

    小學(xué)等差數(shù)列求和公式08-24

    求數(shù)列中幾種類型的通項(xiàng)公式總結(jié)11-22